为并行和分布式应用程序集成的qos感知资源配置

Zengxiang Li, Long Wang, Yu Zhang, Tram Truong Huu, E. S. Lim, Purnima Murali Mohan, Shibin Cheng, Shu Qin Ren, G. Mohan, Zheng Qin, R. Goh
{"title":"为并行和分布式应用程序集成的qos感知资源配置","authors":"Zengxiang Li, Long Wang, Yu Zhang, Tram Truong Huu, E. S. Lim, Purnima Murali Mohan, Shibin Cheng, Shu Qin Ren, G. Mohan, Zheng Qin, R. Goh","doi":"10.1109/DS-RT.2015.38","DOIUrl":null,"url":null,"abstract":"With more parallel and distributed applications moving to Cloud and data centers, it is challenging to provide predictable and controllable resources to multiple tenants, and thus guarantee application performance. In this paper, we propose an integrated QoS-aware resource provisioning platform based on virtualization technology for computing, storage and network resources. Coarse-grained CPU mapping and fine-grained CPU scheduling mechanisms are proposed to enable adjustable computing power. A hierarchical distributed scheduling mechanism is implemented on a scalable storage system to guarantee I/O throughput for individual tenants and applications. A network manager has also been developed to guarantee the data transmission rate. Web-based interface enables users to monitor real time resource utilization and to adjust resource QoS levels on the fly. According to our experimental results, the resource cost can be saved up to 45% without degrading the performance of a distributed data processing benchmark, and the performance of a parallel agent-based simulation can be improved by 91% using the same amount of resources.","PeriodicalId":207275,"journal":{"name":"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated QoS-aware Resource Provisioning for Parallel and Distributed Applications\",\"authors\":\"Zengxiang Li, Long Wang, Yu Zhang, Tram Truong Huu, E. S. Lim, Purnima Murali Mohan, Shibin Cheng, Shu Qin Ren, G. Mohan, Zheng Qin, R. Goh\",\"doi\":\"10.1109/DS-RT.2015.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With more parallel and distributed applications moving to Cloud and data centers, it is challenging to provide predictable and controllable resources to multiple tenants, and thus guarantee application performance. In this paper, we propose an integrated QoS-aware resource provisioning platform based on virtualization technology for computing, storage and network resources. Coarse-grained CPU mapping and fine-grained CPU scheduling mechanisms are proposed to enable adjustable computing power. A hierarchical distributed scheduling mechanism is implemented on a scalable storage system to guarantee I/O throughput for individual tenants and applications. A network manager has also been developed to guarantee the data transmission rate. Web-based interface enables users to monitor real time resource utilization and to adjust resource QoS levels on the fly. According to our experimental results, the resource cost can be saved up to 45% without degrading the performance of a distributed data processing benchmark, and the performance of a parallel agent-based simulation can be improved by 91% using the same amount of resources.\",\"PeriodicalId\":207275,\"journal\":{\"name\":\"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT.2015.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT.2015.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着越来越多的并行和分布式应用程序迁移到云和数据中心,为多个租户提供可预测和可控的资源,从而保证应用程序的性能是一项挑战。本文提出了一种基于虚拟化技术的计算、存储和网络资源集成qos感知资源发放平台。提出了粗粒度的CPU映射和细粒度的CPU调度机制,以实现可调的计算能力。在可扩展的存储系统上实现分层分布式调度机制,以保证单个租户和应用程序的I/O吞吐量。为了保证数据传输速率,还开发了网络管理器。基于web的界面使用户能够实时监控资源利用率,并动态调整资源QoS级别。根据我们的实验结果,在不降低分布式数据处理基准性能的情况下,可以节省高达45%的资源成本,并且在使用相同数量的资源的情况下,基于并行代理的仿真性能可以提高91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated QoS-aware Resource Provisioning for Parallel and Distributed Applications
With more parallel and distributed applications moving to Cloud and data centers, it is challenging to provide predictable and controllable resources to multiple tenants, and thus guarantee application performance. In this paper, we propose an integrated QoS-aware resource provisioning platform based on virtualization technology for computing, storage and network resources. Coarse-grained CPU mapping and fine-grained CPU scheduling mechanisms are proposed to enable adjustable computing power. A hierarchical distributed scheduling mechanism is implemented on a scalable storage system to guarantee I/O throughput for individual tenants and applications. A network manager has also been developed to guarantee the data transmission rate. Web-based interface enables users to monitor real time resource utilization and to adjust resource QoS levels on the fly. According to our experimental results, the resource cost can be saved up to 45% without degrading the performance of a distributed data processing benchmark, and the performance of a parallel agent-based simulation can be improved by 91% using the same amount of resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信