优化矩阵乘法的缓存友好策略

M. Ananth, S. Vishwas, M. R. Anala
{"title":"优化矩阵乘法的缓存友好策略","authors":"M. Ananth, S. Vishwas, M. R. Anala","doi":"10.1109/IACC.2017.0020","DOIUrl":null,"url":null,"abstract":"Matrix multiplication is an operation used in many algorithms with a plethora of applications ranging from Image Processing, Signal Processing, to Artificial Neural Networks and Linear algebra. This work aims to showcase the effect of developing matrix multiplication strategies that are less time and processor intensive by effectively handling memory accesses. The paper also touches upon on the advantages of using OpenMP, a multiprocessing toolkit to show the effect of parallelizing matrix multiplication.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"588 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cache Friendly Strategies to Optimize Matrix Multiplication\",\"authors\":\"M. Ananth, S. Vishwas, M. R. Anala\",\"doi\":\"10.1109/IACC.2017.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix multiplication is an operation used in many algorithms with a plethora of applications ranging from Image Processing, Signal Processing, to Artificial Neural Networks and Linear algebra. This work aims to showcase the effect of developing matrix multiplication strategies that are less time and processor intensive by effectively handling memory accesses. The paper also touches upon on the advantages of using OpenMP, a multiprocessing toolkit to show the effect of parallelizing matrix multiplication.\",\"PeriodicalId\":248433,\"journal\":{\"name\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"volume\":\"588 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACC.2017.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

矩阵乘法是许多算法中使用的一种操作,其应用范围从图像处理、信号处理到人工神经网络和线性代数。这项工作旨在展示开发矩阵乘法策略的效果,通过有效地处理内存访问来减少时间和处理器密集型。本文还谈到了使用OpenMP的优点,OpenMP是一个多处理工具包,用于显示并行化矩阵乘法的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cache Friendly Strategies to Optimize Matrix Multiplication
Matrix multiplication is an operation used in many algorithms with a plethora of applications ranging from Image Processing, Signal Processing, to Artificial Neural Networks and Linear algebra. This work aims to showcase the effect of developing matrix multiplication strategies that are less time and processor intensive by effectively handling memory accesses. The paper also touches upon on the advantages of using OpenMP, a multiprocessing toolkit to show the effect of parallelizing matrix multiplication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信