邪恶:利用自然语言开发软件

Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, R. Natella, Samira Shaikh, Domenico Cotroneo, B. Cukic
{"title":"邪恶:利用自然语言开发软件","authors":"Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, R. Natella, Samira Shaikh, Domenico Cotroneo, B. Cukic","doi":"10.1109/ISSRE52982.2021.00042","DOIUrl":null,"url":null,"abstract":"Writing exploits for security assessment is a challenging task. The writer needs to master programming and obfuscation techniques to develop a successful exploit. To make the task easier, we propose an approach (EVIL) to automatically generate exploits in assembly/Python language from descriptions in natural language. The approach leverages Neural Machine Translation (NMT) techniques and a dataset that we developed for this work. We present an extensive experimental study to evaluate the feasibility of EVIL, using both automatic and manual analysis, and both at generating individual statements and entire exploits. The generated code achieved high accuracy in terms of syntactic and semantic correctness.","PeriodicalId":162410,"journal":{"name":"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"EVIL: Exploiting Software via Natural Language\",\"authors\":\"Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, R. Natella, Samira Shaikh, Domenico Cotroneo, B. Cukic\",\"doi\":\"10.1109/ISSRE52982.2021.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Writing exploits for security assessment is a challenging task. The writer needs to master programming and obfuscation techniques to develop a successful exploit. To make the task easier, we propose an approach (EVIL) to automatically generate exploits in assembly/Python language from descriptions in natural language. The approach leverages Neural Machine Translation (NMT) techniques and a dataset that we developed for this work. We present an extensive experimental study to evaluate the feasibility of EVIL, using both automatic and manual analysis, and both at generating individual statements and entire exploits. The generated code achieved high accuracy in terms of syntactic and semantic correctness.\",\"PeriodicalId\":162410,\"journal\":{\"name\":\"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE52982.2021.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE52982.2021.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为安全评估编写漏洞是一项具有挑战性的任务。作者需要掌握编程和混淆技术来开发成功的漏洞利用。为了使任务更容易,我们提出了一种方法(EVIL),从自然语言的描述中自动生成汇编/Python语言中的漏洞。该方法利用了神经机器翻译(NMT)技术和我们为此工作开发的数据集。我们提出了一项广泛的实验研究来评估EVIL的可行性,使用自动和手动分析,以及生成单个语句和整个漏洞。生成的代码在语法和语义正确性方面达到了较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EVIL: Exploiting Software via Natural Language
Writing exploits for security assessment is a challenging task. The writer needs to master programming and obfuscation techniques to develop a successful exploit. To make the task easier, we propose an approach (EVIL) to automatically generate exploits in assembly/Python language from descriptions in natural language. The approach leverages Neural Machine Translation (NMT) techniques and a dataset that we developed for this work. We present an extensive experimental study to evaluate the feasibility of EVIL, using both automatic and manual analysis, and both at generating individual statements and entire exploits. The generated code achieved high accuracy in terms of syntactic and semantic correctness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信