基于矢量量化的最优混合模型研究

J. Samuelsson
{"title":"基于矢量量化的最优混合模型研究","authors":"J. Samuelsson","doi":"10.1109/ICICS.2005.1689272","DOIUrl":null,"url":null,"abstract":"Gaussian mixture model (GMM) based vector quantization (VQ) using a data-dependent weighted Euclidean distortion measure is presented. It is shown how GMM-VQ can be improved by using GMMs that model the optimal VQ point density rather than the source probability density as is done in previous work. GMM training procedures as well as procedures for encoding and decoding that takes a weighted distortion measure into account are presented. The usefulness of the proposed procedures is demonstrated on a source derived from speech spectrum parameters","PeriodicalId":425178,"journal":{"name":"2005 5th International Conference on Information Communications & Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Toward Optimal Mixture Model Based Vector Quantization\",\"authors\":\"J. Samuelsson\",\"doi\":\"10.1109/ICICS.2005.1689272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian mixture model (GMM) based vector quantization (VQ) using a data-dependent weighted Euclidean distortion measure is presented. It is shown how GMM-VQ can be improved by using GMMs that model the optimal VQ point density rather than the source probability density as is done in previous work. GMM training procedures as well as procedures for encoding and decoding that takes a weighted distortion measure into account are presented. The usefulness of the proposed procedures is demonstrated on a source derived from speech spectrum parameters\",\"PeriodicalId\":425178,\"journal\":{\"name\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2005.1689272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 5th International Conference on Information Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2005.1689272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于高斯混合模型(GMM)的基于数据相关的加权欧几里德失真度量的矢量量化(VQ)方法。本文展示了GMM-VQ如何通过使用gmm模型来改进最佳VQ点密度,而不是像以前的工作那样模拟源概率密度。给出了GMM的训练程序以及考虑加权失真度量的编码和解码程序。提出的程序的有效性证明了源派生的语音频谱参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Optimal Mixture Model Based Vector Quantization
Gaussian mixture model (GMM) based vector quantization (VQ) using a data-dependent weighted Euclidean distortion measure is presented. It is shown how GMM-VQ can be improved by using GMMs that model the optimal VQ point density rather than the source probability density as is done in previous work. GMM training procedures as well as procedures for encoding and decoding that takes a weighted distortion measure into account are presented. The usefulness of the proposed procedures is demonstrated on a source derived from speech spectrum parameters
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信