基于ridgelet - dtw的阿拉伯语历史文献单词识别

Youcef Brik, Y. Chibani, Et-Tahir Zemouri, A. Sehad
{"title":"基于ridgelet - dtw的阿拉伯语历史文献单词识别","authors":"Youcef Brik, Y. Chibani, Et-Tahir Zemouri, A. Sehad","doi":"10.1109/ISPA.2013.6703738","DOIUrl":null,"url":null,"abstract":"In this paper we propose a system for word spotting in Arabic historical document using Ridgelet transform and Dynamic Time Warping (DTW). First, a preprocessing and segmentation processes are applied to all document pages to create a word image dataset. Keeping each word into its original size, Ridgelet descriptor is generated without applying the normalization criteria for Radon transform, where the rotation, translation and scaling invariance is achieved. Therefore, DTW algorithm is employed to match corresponding projection angle pairs from Ridgelet descriptor, while avoiding problems associated with dimensionality reduction of descriptor sets into one vector which cause a loss of useful information. Experiments were conducted on historical Arabic document from the National library. The obtained results showed the effectiveness of the proposed method.","PeriodicalId":425029,"journal":{"name":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ridgelet-DTW-based word spotting for Arabic historical document\",\"authors\":\"Youcef Brik, Y. Chibani, Et-Tahir Zemouri, A. Sehad\",\"doi\":\"10.1109/ISPA.2013.6703738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a system for word spotting in Arabic historical document using Ridgelet transform and Dynamic Time Warping (DTW). First, a preprocessing and segmentation processes are applied to all document pages to create a word image dataset. Keeping each word into its original size, Ridgelet descriptor is generated without applying the normalization criteria for Radon transform, where the rotation, translation and scaling invariance is achieved. Therefore, DTW algorithm is employed to match corresponding projection angle pairs from Ridgelet descriptor, while avoiding problems associated with dimensionality reduction of descriptor sets into one vector which cause a loss of useful information. Experiments were conducted on historical Arabic document from the National library. The obtained results showed the effectiveness of the proposed method.\",\"PeriodicalId\":425029,\"journal\":{\"name\":\"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2013.6703738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2013.6703738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于脊波变换和动态时间翘曲(DTW)的阿拉伯语历史文献词点识别系统。首先,对所有文档页面进行预处理和分割处理,生成词图像数据集。保持每个单词的原始大小,Ridgelet描述符的生成不需要应用Radon变换的标准化标准,其中实现了旋转,平移和缩放不变性。因此,采用DTW算法从Ridgelet描述子中匹配相应的投影角度对,同时避免了描述子集降维为一个向量导致有用信息丢失的问题。实验是在国家图书馆的阿拉伯历史文献上进行的。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ridgelet-DTW-based word spotting for Arabic historical document
In this paper we propose a system for word spotting in Arabic historical document using Ridgelet transform and Dynamic Time Warping (DTW). First, a preprocessing and segmentation processes are applied to all document pages to create a word image dataset. Keeping each word into its original size, Ridgelet descriptor is generated without applying the normalization criteria for Radon transform, where the rotation, translation and scaling invariance is achieved. Therefore, DTW algorithm is employed to match corresponding projection angle pairs from Ridgelet descriptor, while avoiding problems associated with dimensionality reduction of descriptor sets into one vector which cause a loss of useful information. Experiments were conducted on historical Arabic document from the National library. The obtained results showed the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信