基于循环gan和UNet-GAN的CT到MRI转换研究

Y. Lai
{"title":"基于循环gan和UNet-GAN的CT到MRI转换研究","authors":"Y. Lai","doi":"10.1117/12.2668052","DOIUrl":null,"url":null,"abstract":"MRI and CT are both important medical imaging modalities, but MRI and CT imaging are done in different ways, each with its own advantages and disadvantages. Obtaining both images at the same time can help physicians make better decisions about treatment options. However, due to various limitations, some patients can only obtain one type of image. Therefore, it is necessary to find a well-performing GAN to transform MRI and CT images. In this paper, the effect of Cycle-GAN with different activation functions is compared, such as LeakyRELU, and different number of layers in MRI-CT conversion. Also, this article compares the effects of Cycle-GAN and UNet-GAN. The results indicate that the Cycle-GAN model using LeakyRELU as the activation function is better than the Cycle-GAN model using RELU as the activation function. Second, the effect of deepening the layers of the GAN model is worse than that of the base model. And the effect of UNet-GAN is similar to that of Cycle-GAN. This is not quite as expected, because Cycle-GAN has one more discriminator than UNet-GAN, and the effect should be better. But the experimental results do not confirm this conclusion.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study for CT to MRI translation based on cycle-GAN and UNet-GAN\",\"authors\":\"Y. Lai\",\"doi\":\"10.1117/12.2668052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRI and CT are both important medical imaging modalities, but MRI and CT imaging are done in different ways, each with its own advantages and disadvantages. Obtaining both images at the same time can help physicians make better decisions about treatment options. However, due to various limitations, some patients can only obtain one type of image. Therefore, it is necessary to find a well-performing GAN to transform MRI and CT images. In this paper, the effect of Cycle-GAN with different activation functions is compared, such as LeakyRELU, and different number of layers in MRI-CT conversion. Also, this article compares the effects of Cycle-GAN and UNet-GAN. The results indicate that the Cycle-GAN model using LeakyRELU as the activation function is better than the Cycle-GAN model using RELU as the activation function. Second, the effect of deepening the layers of the GAN model is worse than that of the base model. And the effect of UNet-GAN is similar to that of Cycle-GAN. This is not quite as expected, because Cycle-GAN has one more discriminator than UNet-GAN, and the effect should be better. But the experimental results do not confirm this conclusion.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2668052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2668052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MRI和CT都是重要的医学成像方式,但MRI和CT成像方式不同,各有优缺点。同时获得这两种图像可以帮助医生更好地决定治疗方案。然而,由于各种限制,一些患者只能获得一种类型的图像。因此,有必要寻找一种性能良好的GAN来转换MRI和CT图像。本文比较了不同激活函数(如LeakyRELU)和不同层数的Cycle-GAN在MRI-CT转换中的效果。本文还比较了Cycle-GAN和UNet-GAN的效果。结果表明,以LeakyRELU为激活函数的Cycle-GAN模型优于以RELU为激活函数的Cycle-GAN模型。其次,GAN模型加深层的效果比基本模型差。UNet-GAN的效果与Cycle-GAN相似。这与预期的不太一样,因为Cycle-GAN比UNet-GAN多了一个鉴别器,所以效果应该更好。但实验结果并不能证实这一结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study for CT to MRI translation based on cycle-GAN and UNet-GAN
MRI and CT are both important medical imaging modalities, but MRI and CT imaging are done in different ways, each with its own advantages and disadvantages. Obtaining both images at the same time can help physicians make better decisions about treatment options. However, due to various limitations, some patients can only obtain one type of image. Therefore, it is necessary to find a well-performing GAN to transform MRI and CT images. In this paper, the effect of Cycle-GAN with different activation functions is compared, such as LeakyRELU, and different number of layers in MRI-CT conversion. Also, this article compares the effects of Cycle-GAN and UNet-GAN. The results indicate that the Cycle-GAN model using LeakyRELU as the activation function is better than the Cycle-GAN model using RELU as the activation function. Second, the effect of deepening the layers of the GAN model is worse than that of the base model. And the effect of UNet-GAN is similar to that of Cycle-GAN. This is not quite as expected, because Cycle-GAN has one more discriminator than UNet-GAN, and the effect should be better. But the experimental results do not confirm this conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信