减轻机器人系统中传感器电离剂量失效的机器学习技术

L. C. Adams, J. Howard, E. J. Barth, peixiong zhao, R. A. Reed, R. A. Peters, A. Witulski
{"title":"减轻机器人系统中传感器电离剂量失效的机器学习技术","authors":"L. C. Adams, J. Howard, E. J. Barth, peixiong zhao, R. A. Reed, R. A. Peters, A. Witulski","doi":"10.1109/radecs45761.2018.9328649","DOIUrl":null,"url":null,"abstract":"Machine learning is used to extend performance in robotic systems suffering from TID sensor failure. The method is implemented on a robotic manipulator to demonstrate reconstruction of encoder signals submitted to simulated radiation effects.","PeriodicalId":248855,"journal":{"name":"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Techniques for Mitigating Sensor Ionizing Dose Failures in Robotic Systems\",\"authors\":\"L. C. Adams, J. Howard, E. J. Barth, peixiong zhao, R. A. Reed, R. A. Peters, A. Witulski\",\"doi\":\"10.1109/radecs45761.2018.9328649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is used to extend performance in robotic systems suffering from TID sensor failure. The method is implemented on a robotic manipulator to demonstrate reconstruction of encoder signals submitted to simulated radiation effects.\",\"PeriodicalId\":248855,\"journal\":{\"name\":\"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)\",\"volume\":\"320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/radecs45761.2018.9328649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/radecs45761.2018.9328649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习用于扩展机器人系统在TID传感器故障时的性能。该方法在机械臂上实现,以演示提交给模拟辐射效应的编码器信号的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Techniques for Mitigating Sensor Ionizing Dose Failures in Robotic Systems
Machine learning is used to extend performance in robotic systems suffering from TID sensor failure. The method is implemented on a robotic manipulator to demonstrate reconstruction of encoder signals submitted to simulated radiation effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信