H. Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, Y. Nojima
{"title":"通过基于超卷的解决方案选择方法选择少量具有代表性的非主导解决方案","authors":"H. Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, Y. Nojima","doi":"10.1109/FUZZY.2009.5277324","DOIUrl":null,"url":null,"abstract":"A large number of non-dominated solutions are often obtained by a single run of an evolutionary multiobjective optimization (EMO) algorithm. In the EMO research area, it is usually assumed that a single solution is to be chosen from the obtained non-dominated solutions by the decision maker. It is, however, time-consuming and not easy for the decision maker to examine a large number of obtained non-dominated solutions. Motivated by these discussions, we proposed single-objective and multiobjective formulations of solution selection problems to present only a small number of representative non-dominated solutions to the decision maker in our former study. The basic idea is to minimize the number of solutions to be presented while maximizing their hypervolume. A number of single-objective formulations can be derived from such a two-objective solution selection problem. In this paper, single-objective rule selection is performed as a post-processing procedure of EMO algorithms to select a prespecified number of non-dominated solutions (e.g., 10 or 20 solutions). Through computational experiments on multiobjective 0/1 knapsack problems, we examine the characteristic features of selected non-dominated solutions. We also examine the effect of the choice of a reference point for hypervolume calculation on the distribution of selected non-dominated solutions.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Selecting a small number of representative non-dominated solutions by a hypervolume-based solution selection approach\",\"authors\":\"H. Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, Y. Nojima\",\"doi\":\"10.1109/FUZZY.2009.5277324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of non-dominated solutions are often obtained by a single run of an evolutionary multiobjective optimization (EMO) algorithm. In the EMO research area, it is usually assumed that a single solution is to be chosen from the obtained non-dominated solutions by the decision maker. It is, however, time-consuming and not easy for the decision maker to examine a large number of obtained non-dominated solutions. Motivated by these discussions, we proposed single-objective and multiobjective formulations of solution selection problems to present only a small number of representative non-dominated solutions to the decision maker in our former study. The basic idea is to minimize the number of solutions to be presented while maximizing their hypervolume. A number of single-objective formulations can be derived from such a two-objective solution selection problem. In this paper, single-objective rule selection is performed as a post-processing procedure of EMO algorithms to select a prespecified number of non-dominated solutions (e.g., 10 or 20 solutions). Through computational experiments on multiobjective 0/1 knapsack problems, we examine the characteristic features of selected non-dominated solutions. We also examine the effect of the choice of a reference point for hypervolume calculation on the distribution of selected non-dominated solutions.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selecting a small number of representative non-dominated solutions by a hypervolume-based solution selection approach
A large number of non-dominated solutions are often obtained by a single run of an evolutionary multiobjective optimization (EMO) algorithm. In the EMO research area, it is usually assumed that a single solution is to be chosen from the obtained non-dominated solutions by the decision maker. It is, however, time-consuming and not easy for the decision maker to examine a large number of obtained non-dominated solutions. Motivated by these discussions, we proposed single-objective and multiobjective formulations of solution selection problems to present only a small number of representative non-dominated solutions to the decision maker in our former study. The basic idea is to minimize the number of solutions to be presented while maximizing their hypervolume. A number of single-objective formulations can be derived from such a two-objective solution selection problem. In this paper, single-objective rule selection is performed as a post-processing procedure of EMO algorithms to select a prespecified number of non-dominated solutions (e.g., 10 or 20 solutions). Through computational experiments on multiobjective 0/1 knapsack problems, we examine the characteristic features of selected non-dominated solutions. We also examine the effect of the choice of a reference point for hypervolume calculation on the distribution of selected non-dominated solutions.