使用机器学习模型预测乳腺癌

Zhiqi Li, Shirui Tian, Tain Ya, Zhenning Yang
{"title":"使用机器学习模型预测乳腺癌","authors":"Zhiqi Li, Shirui Tian, Tain Ya, Zhenning Yang","doi":"10.1117/12.2672652","DOIUrl":null,"url":null,"abstract":"This paper is to predict the presence of recurrence for breast cancer patients by citing data. As a first step we will collect relevant data on breast cancer patients from the internet. Next, we will use decision trees in Scikit-learn to determine if there will be a recurrence of breast cancer in patients who have been cured. Through a series of calculations and predictions, the accuracy of our experimental model finally reaches 0.75 accuracy. These data can help us to accomplish our target prediction well.","PeriodicalId":290902,"journal":{"name":"International Conference on Mechatronics Engineering and Artificial Intelligence","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breast cancer prediction using machine learning models\",\"authors\":\"Zhiqi Li, Shirui Tian, Tain Ya, Zhenning Yang\",\"doi\":\"10.1117/12.2672652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is to predict the presence of recurrence for breast cancer patients by citing data. As a first step we will collect relevant data on breast cancer patients from the internet. Next, we will use decision trees in Scikit-learn to determine if there will be a recurrence of breast cancer in patients who have been cured. Through a series of calculations and predictions, the accuracy of our experimental model finally reaches 0.75 accuracy. These data can help us to accomplish our target prediction well.\",\"PeriodicalId\":290902,\"journal\":{\"name\":\"International Conference on Mechatronics Engineering and Artificial Intelligence\",\"volume\":\"331 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Mechatronics Engineering and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2672652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Mechatronics Engineering and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2672652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在通过引用数据预测乳腺癌患者是否存在复发。作为第一步,我们将从互联网上收集乳腺癌患者的相关数据。接下来,我们将使用Scikit-learn中的决策树来确定已经治愈的乳腺癌患者是否会复发。通过一系列的计算和预测,我们的实验模型的精度最终达到0.75的精度。这些数据可以帮助我们很好地完成目标预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast cancer prediction using machine learning models
This paper is to predict the presence of recurrence for breast cancer patients by citing data. As a first step we will collect relevant data on breast cancer patients from the internet. Next, we will use decision trees in Scikit-learn to determine if there will be a recurrence of breast cancer in patients who have been cured. Through a series of calculations and predictions, the accuracy of our experimental model finally reaches 0.75 accuracy. These data can help us to accomplish our target prediction well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信