深度绘制与张量投票使用局部几何

Mandar Kulkarni, A. Rajagopalan, G. Rigoll
{"title":"深度绘制与张量投票使用局部几何","authors":"Mandar Kulkarni, A. Rajagopalan, G. Rigoll","doi":"10.5220/0003840100220030","DOIUrl":null,"url":null,"abstract":"Range images captured from range scanning devices or reconstructed form optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections etc. In this paper, we propose a fast and simple algorithm for range map inpainting using Tensor Voting (TV) framework. From a single range image, we gather and analyze geometric information so as to estimate missing depth values. To deal with large missing regions, TV-based segmentation is initially employed as a cue for a region filling. Subsequently, we use 3D tensor voting for estimating different plane equations and pass depth estimates from all possible local planes that pass through a missing region. A final pass of tensor voting is performed to choose the best depth estimate for each point in the missing region. We demonstrate the effectiveness of our approach on synthetic as well as real data.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Depth Inpainting with Tensor Voting using Local Geometry\",\"authors\":\"Mandar Kulkarni, A. Rajagopalan, G. Rigoll\",\"doi\":\"10.5220/0003840100220030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Range images captured from range scanning devices or reconstructed form optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections etc. In this paper, we propose a fast and simple algorithm for range map inpainting using Tensor Voting (TV) framework. From a single range image, we gather and analyze geometric information so as to estimate missing depth values. To deal with large missing regions, TV-based segmentation is initially employed as a cue for a region filling. Subsequently, we use 3D tensor voting for estimating different plane equations and pass depth estimates from all possible local planes that pass through a missing region. A final pass of tensor voting is performed to choose the best depth estimate for each point in the missing region. We demonstrate the effectiveness of our approach on synthetic as well as real data.\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003840100220030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003840100220030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

从距离扫描设备捕获的距离图像或由光学相机重建的距离图像通常由于遮挡、反射率、扫描区域有限、传感器缺陷等原因而存在缺失区域。本文提出了一种基于张量投票(Tensor Voting, TV)框架的快速、简单的距离图绘制算法。从单个范围图像中,我们收集和分析几何信息,以估计缺失的深度值。为了处理大的缺失区域,基于电视的分割最初被用作区域填充的提示。随后,我们使用3D张量投票来估计不同的平面方程,并从通过缺失区域的所有可能的局部平面传递深度估计。最后进行张量投票,以选择缺失区域中每个点的最佳深度估计。我们证明了我们的方法在合成数据和实际数据上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth Inpainting with Tensor Voting using Local Geometry
Range images captured from range scanning devices or reconstructed form optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections etc. In this paper, we propose a fast and simple algorithm for range map inpainting using Tensor Voting (TV) framework. From a single range image, we gather and analyze geometric information so as to estimate missing depth values. To deal with large missing regions, TV-based segmentation is initially employed as a cue for a region filling. Subsequently, we use 3D tensor voting for estimating different plane equations and pass depth estimates from all possible local planes that pass through a missing region. A final pass of tensor voting is performed to choose the best depth estimate for each point in the missing region. We demonstrate the effectiveness of our approach on synthetic as well as real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信