基于贝叶斯框架的心跳检测

Wen-Long Chin, Jong-Hun Yu, Cheng-Lung Tseng
{"title":"基于贝叶斯框架的心跳检测","authors":"Wen-Long Chin, Jong-Hun Yu, Cheng-Lung Tseng","doi":"10.1109/SIPROCESS.2016.7888335","DOIUrl":null,"url":null,"abstract":"The detection of heartbeat is an important and challenging issue for health care. This work proposes to estimate the QRS complex parameters based on the maximum-likelihood (ML) principle. To this goal, a new signal model and its Bayesian framework are studied. Detectors or estimators based on the Bayesian framework are considered to be optimal in the statistical signal processing point of view. To reduce the complexity of original method, its iterative counterpart is investigated by using the decomposition method. Detailed information of QRS complexes, including the starting point, duration, and period, can be derived by the proposed method for further medical diagnosis. Simulations using the benchmark MIT-BIH Arrhythmia database verify the advantages of the proposed approaches compared to traditional ones.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of heartbeats based on the Bayesian framework\",\"authors\":\"Wen-Long Chin, Jong-Hun Yu, Cheng-Lung Tseng\",\"doi\":\"10.1109/SIPROCESS.2016.7888335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of heartbeat is an important and challenging issue for health care. This work proposes to estimate the QRS complex parameters based on the maximum-likelihood (ML) principle. To this goal, a new signal model and its Bayesian framework are studied. Detectors or estimators based on the Bayesian framework are considered to be optimal in the statistical signal processing point of view. To reduce the complexity of original method, its iterative counterpart is investigated by using the decomposition method. Detailed information of QRS complexes, including the starting point, duration, and period, can be derived by the proposed method for further medical diagnosis. Simulations using the benchmark MIT-BIH Arrhythmia database verify the advantages of the proposed approaches compared to traditional ones.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于医疗保健来说,心跳检测是一个重要而具有挑战性的问题。本文提出了一种基于最大似然原理的QRS复合参数估计方法。为此,研究了一种新的信号模型及其贝叶斯框架。从统计信号处理的角度来看,基于贝叶斯框架的检测器或估计器是最优的。为了降低原方法的复杂度,采用分解方法对原方法进行迭代研究。QRS复合物的详细信息,包括起始点、持续时间和周期,可以通过提出的方法得到进一步的医学诊断。使用基准MIT-BIH心律失常数据库的仿真验证了所提出方法与传统方法相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of heartbeats based on the Bayesian framework
The detection of heartbeat is an important and challenging issue for health care. This work proposes to estimate the QRS complex parameters based on the maximum-likelihood (ML) principle. To this goal, a new signal model and its Bayesian framework are studied. Detectors or estimators based on the Bayesian framework are considered to be optimal in the statistical signal processing point of view. To reduce the complexity of original method, its iterative counterpart is investigated by using the decomposition method. Detailed information of QRS complexes, including the starting point, duration, and period, can be derived by the proposed method for further medical diagnosis. Simulations using the benchmark MIT-BIH Arrhythmia database verify the advantages of the proposed approaches compared to traditional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信