基于多模态感知的分层分类人体活动识别与跌倒检测

Haobo Li, Aman Shrestha, F. Fioranelli, J. Kernec, H. Heidari
{"title":"基于多模态感知的分层分类人体活动识别与跌倒检测","authors":"Haobo Li, Aman Shrestha, F. Fioranelli, J. Kernec, H. Heidari","doi":"10.1109/ICSENS.2018.8589797","DOIUrl":null,"url":null,"abstract":"This paper presents initial results on the usage of hierarchical classification for human activities discrimination and fall detection in the context of assisted living. Multimodal sensing is proposed by combining data from a wearable device and a radar system. The effect of different approaches in selecting the activities in each sub-group of the hierarchy are explored and reported as preliminary results in this work, while a more detailed investigation is undergoing. 1.2-2.2% improvement in accuracy with SVM and DL classifiers compared with the conventional case of activity classification is reported; subsequent improvement (1.6%) occurs when using SVM-SFS in the second stage of hierarchical classification.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchical Classification on Multimodal Sensing for Human Activity Recogintion and Fall Detection\",\"authors\":\"Haobo Li, Aman Shrestha, F. Fioranelli, J. Kernec, H. Heidari\",\"doi\":\"10.1109/ICSENS.2018.8589797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents initial results on the usage of hierarchical classification for human activities discrimination and fall detection in the context of assisted living. Multimodal sensing is proposed by combining data from a wearable device and a radar system. The effect of different approaches in selecting the activities in each sub-group of the hierarchy are explored and reported as preliminary results in this work, while a more detailed investigation is undergoing. 1.2-2.2% improvement in accuracy with SVM and DL classifiers compared with the conventional case of activity classification is reported; subsequent improvement (1.6%) occurs when using SVM-SFS in the second stage of hierarchical classification.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了在辅助生活环境中使用分层分类进行人类活动识别和跌倒检测的初步结果。将可穿戴设备和雷达系统的数据相结合,提出了多模态传感。在这项工作中,对选择层次结构的每个子组的活动的不同方法的影响进行了探讨,并作为初步结果报告,同时正在进行更详细的调查。与传统的活动分类相比,SVM和DL分类器的准确率提高了1.2-2.2%;在分层分类的第二阶段使用SVM-SFS时,出现了1.6%的后续改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Classification on Multimodal Sensing for Human Activity Recogintion and Fall Detection
This paper presents initial results on the usage of hierarchical classification for human activities discrimination and fall detection in the context of assisted living. Multimodal sensing is proposed by combining data from a wearable device and a radar system. The effect of different approaches in selecting the activities in each sub-group of the hierarchy are explored and reported as preliminary results in this work, while a more detailed investigation is undergoing. 1.2-2.2% improvement in accuracy with SVM and DL classifiers compared with the conventional case of activity classification is reported; subsequent improvement (1.6%) occurs when using SVM-SFS in the second stage of hierarchical classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信