云空化非定常行为的光滑粒子流体力学数值研究

T. Ushioku, Hiroaki Yoshimura
{"title":"云空化非定常行为的光滑粒子流体力学数值研究","authors":"T. Ushioku, Hiroaki Yoshimura","doi":"10.1115/fedsm2020-20117","DOIUrl":null,"url":null,"abstract":"\n Cavitation generates a portion of cavities called a cavitation cloud, which performs a collective unsteady motion of repeating the process of growth and collapse. In particular, it is considered that a high-pressure shock wave propagates associated with the collapse. In order to understand such unsteady behaviors of the cavitation cloud, much effort has been made for the numerical analysis of internal flows of the cavitation cloud. However, it is not clear how such a cavitation cloud can be identified as a physical entity nor how its unsteady collective motion can be elucidated in the context of the multiphase fluid flow. In this study, we make a two-dimensional numerical analysis of the multiphase flow of the submerged bubbly water jet injecting into still water through a nozzle. To model the bubbly water jet, we employ the mixture model of liquids and gases, and we utilize the Smoothed Particle Hydrodynamics method for the numerical analysis of the unsteady flows in Lagrangian description. Finally, in order to clarify the unsteady behaviors of the cloud cavitation, we show how the cavitation cloud can be generated in the context of velocity fields in the multiphase flow and in particular, we clarify how twin vortices induced by the water jet play an essential role in the expansion and shrinkage of the cloud.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Unsteady Behavior of Cloud Cavitation by Smoothed Particle Hydrodynamics\",\"authors\":\"T. Ushioku, Hiroaki Yoshimura\",\"doi\":\"10.1115/fedsm2020-20117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cavitation generates a portion of cavities called a cavitation cloud, which performs a collective unsteady motion of repeating the process of growth and collapse. In particular, it is considered that a high-pressure shock wave propagates associated with the collapse. In order to understand such unsteady behaviors of the cavitation cloud, much effort has been made for the numerical analysis of internal flows of the cavitation cloud. However, it is not clear how such a cavitation cloud can be identified as a physical entity nor how its unsteady collective motion can be elucidated in the context of the multiphase fluid flow. In this study, we make a two-dimensional numerical analysis of the multiphase flow of the submerged bubbly water jet injecting into still water through a nozzle. To model the bubbly water jet, we employ the mixture model of liquids and gases, and we utilize the Smoothed Particle Hydrodynamics method for the numerical analysis of the unsteady flows in Lagrangian description. Finally, in order to clarify the unsteady behaviors of the cloud cavitation, we show how the cavitation cloud can be generated in the context of velocity fields in the multiphase flow and in particular, we clarify how twin vortices induced by the water jet play an essential role in the expansion and shrinkage of the cloud.\",\"PeriodicalId\":333138,\"journal\":{\"name\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空化会产生一部分空腔,称为空化云,它会重复生长和崩溃的过程,进行集体不稳定运动。特别地,我们认为高压激波的传播与坍塌有关。为了理解空化云的这种非定常行为,人们对空化云内部流动进行了大量的数值分析。然而,目前尚不清楚如何将这种空化云识别为物理实体,也不清楚如何在多相流体流动的背景下解释其非定常集体运动。本文对水下气泡水射流通过喷嘴注入静水中时的多相流动进行了二维数值分析。为了模拟气泡水射流,我们采用了液体和气体的混合模型,并利用光滑粒子流体力学方法对拉格朗日描述的非定常流动进行了数值分析。最后,为了阐明云空化的非定常行为,我们展示了在多相流速度场的背景下如何产生空化云,特别是我们阐明了由水射流诱导的双涡如何在云的膨胀和收缩中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of Unsteady Behavior of Cloud Cavitation by Smoothed Particle Hydrodynamics
Cavitation generates a portion of cavities called a cavitation cloud, which performs a collective unsteady motion of repeating the process of growth and collapse. In particular, it is considered that a high-pressure shock wave propagates associated with the collapse. In order to understand such unsteady behaviors of the cavitation cloud, much effort has been made for the numerical analysis of internal flows of the cavitation cloud. However, it is not clear how such a cavitation cloud can be identified as a physical entity nor how its unsteady collective motion can be elucidated in the context of the multiphase fluid flow. In this study, we make a two-dimensional numerical analysis of the multiphase flow of the submerged bubbly water jet injecting into still water through a nozzle. To model the bubbly water jet, we employ the mixture model of liquids and gases, and we utilize the Smoothed Particle Hydrodynamics method for the numerical analysis of the unsteady flows in Lagrangian description. Finally, in order to clarify the unsteady behaviors of the cloud cavitation, we show how the cavitation cloud can be generated in the context of velocity fields in the multiphase flow and in particular, we clarify how twin vortices induced by the water jet play an essential role in the expansion and shrinkage of the cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信