基于深度序列神经网络的可穿戴传感器睡眠评分估计新方法

Md Juber Rahman, B. Morshed
{"title":"基于深度序列神经网络的可穿戴传感器睡眠评分估计新方法","authors":"Md Juber Rahman, B. Morshed","doi":"10.1109/EIT51626.2021.9491896","DOIUrl":null,"url":null,"abstract":"The use of sleep score as a measure of fitness and wellness is getting popular in Smart Health as it provides an objective assessment of sleep quality. However, reliable estimation of sleep scores from wearable sensor data only is challenging. In this study, we investigated the estimation of sleep score using only features available from single-channel ECG or single-channel EEG data. We used partial correlation and conditional permutation importance for feature selection; then compared extreme gradient boosting, artificial neural network, and sequential neural network for developing a regression model for sleep score estimation. TabNet- an attention-based deep sequential learning model achieved the best performance of RMSE = 5.47 and R-squared value of 0.59 in the test set for sleep score estimation using only spectral features of single-channel EEG. The results pave the way for reliable and interpretable sleep score estimation using a wearable device.","PeriodicalId":162816,"journal":{"name":"2021 IEEE International Conference on Electro Information Technology (EIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Sleep Score Estimation Using Wearable Sensors with a Deep Sequential Neural Network\",\"authors\":\"Md Juber Rahman, B. Morshed\",\"doi\":\"10.1109/EIT51626.2021.9491896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of sleep score as a measure of fitness and wellness is getting popular in Smart Health as it provides an objective assessment of sleep quality. However, reliable estimation of sleep scores from wearable sensor data only is challenging. In this study, we investigated the estimation of sleep score using only features available from single-channel ECG or single-channel EEG data. We used partial correlation and conditional permutation importance for feature selection; then compared extreme gradient boosting, artificial neural network, and sequential neural network for developing a regression model for sleep score estimation. TabNet- an attention-based deep sequential learning model achieved the best performance of RMSE = 5.47 and R-squared value of 0.59 in the test set for sleep score estimation using only spectral features of single-channel EEG. The results pave the way for reliable and interpretable sleep score estimation using a wearable device.\",\"PeriodicalId\":162816,\"journal\":{\"name\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT51626.2021.9491896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electro Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT51626.2021.9491896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用睡眠评分作为健身和健康的衡量标准在智能健康中越来越受欢迎,因为它提供了对睡眠质量的客观评估。然而,仅从可穿戴传感器数据中可靠地估计睡眠评分是具有挑战性的。在这项研究中,我们研究了仅使用单通道ECG或单通道EEG数据中可用的特征来估计睡眠评分。我们使用偏相关和条件排列重要性进行特征选择;然后比较了极端梯度增强、人工神经网络和序列神经网络,建立了睡眠评分估计的回归模型。基于注意的深度顺序学习模型TabNet在仅使用单通道脑电图频谱特征估计睡眠评分的测试集中,RMSE = 5.47, r²值为0.59。该结果为使用可穿戴设备进行可靠和可解释的睡眠评分估计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Method for Sleep Score Estimation Using Wearable Sensors with a Deep Sequential Neural Network
The use of sleep score as a measure of fitness and wellness is getting popular in Smart Health as it provides an objective assessment of sleep quality. However, reliable estimation of sleep scores from wearable sensor data only is challenging. In this study, we investigated the estimation of sleep score using only features available from single-channel ECG or single-channel EEG data. We used partial correlation and conditional permutation importance for feature selection; then compared extreme gradient boosting, artificial neural network, and sequential neural network for developing a regression model for sleep score estimation. TabNet- an attention-based deep sequential learning model achieved the best performance of RMSE = 5.47 and R-squared value of 0.59 in the test set for sleep score estimation using only spectral features of single-channel EEG. The results pave the way for reliable and interpretable sleep score estimation using a wearable device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信