H. Ju, Shailashree Pachhapure, Amila Mufida, A-Reum Kim, D. Elmaleh, Sungwoong Choi, B. Jang
{"title":"萘普生和布洛芬二聚体的2-芳基丙酸酰胺修饰对BV2小鼠小胶质细胞抗神经炎活性的影响","authors":"H. Ju, Shailashree Pachhapure, Amila Mufida, A-Reum Kim, D. Elmaleh, Sungwoong Choi, B. Jang","doi":"10.46308/kmj.2022.00199","DOIUrl":null,"url":null,"abstract":"Inflammation is a common link in the pathophysiology of many neurological illnesses, including Alzheimer’s disease. Activated glial cells contribute to neuroinflammation by producing pro-inflammatory mediators. Naproxen and ibuprofen are nonsteroidal anti-inflammatory drugs with 2-aryl(s) propionic acid as a common pharmacophore. Here we designed a small series of naproxen and ibuprofen amide dimers and tested their effects on the expression of inducible nitric oxide synthase (iNOS), a neuroinflammatory enzyme in lipopolysaccharide (LPS)-stimulated BV2 mouse microglial cells. Of note, treatment with CNU 019, 020, 021, 023, 024, and 027 at 10 M markedly inhibited the LPS-induced iNOS expression in BV2 cells. CNU 024 was tested further at different concentrations to regulate the LPS-induced iNOS expression in BV2 cells. Treatment with CNU 024 at 5, 10, or 20 M dose-dependently suppressed the LPS-induced iNOS protein and mRNA expression levels in BV2 cells, in which maximal inhibition was seen at 20 M. CNU 024 treatment at doses tested further led to a concentration-dependent inhibition of the LPS-induced phosphorylation (activation) of p38 mitogen-activated protein kinase (MAPK) without influencing its total protein expression in BV2 cells, but it did not affect the LPS-induced activation of c-jun N-terminal kinase-1/2 and extracellular signal-regulated kinases-1/2 in these cells. In summary, our results demonstrate that CNU 024 inhibits the LPS-induced iNOS expression in BV2 cells, partly mediated by the inhibition of p38 MAPK. This work shows that CNU 024 could be a valuable ligand for further development as a potential drug candidate for treating neuroinflammatory pathologies.","PeriodicalId":166951,"journal":{"name":"Keimyung Medical Journal","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Aryl Propionic Acid Amide Modification of Naproxen and Ibuprofen Dimers for Anti-neuroinflammatory Activity in BV2 mouse Microglial Cells\",\"authors\":\"H. Ju, Shailashree Pachhapure, Amila Mufida, A-Reum Kim, D. Elmaleh, Sungwoong Choi, B. Jang\",\"doi\":\"10.46308/kmj.2022.00199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inflammation is a common link in the pathophysiology of many neurological illnesses, including Alzheimer’s disease. Activated glial cells contribute to neuroinflammation by producing pro-inflammatory mediators. Naproxen and ibuprofen are nonsteroidal anti-inflammatory drugs with 2-aryl(s) propionic acid as a common pharmacophore. Here we designed a small series of naproxen and ibuprofen amide dimers and tested their effects on the expression of inducible nitric oxide synthase (iNOS), a neuroinflammatory enzyme in lipopolysaccharide (LPS)-stimulated BV2 mouse microglial cells. Of note, treatment with CNU 019, 020, 021, 023, 024, and 027 at 10 M markedly inhibited the LPS-induced iNOS expression in BV2 cells. CNU 024 was tested further at different concentrations to regulate the LPS-induced iNOS expression in BV2 cells. Treatment with CNU 024 at 5, 10, or 20 M dose-dependently suppressed the LPS-induced iNOS protein and mRNA expression levels in BV2 cells, in which maximal inhibition was seen at 20 M. CNU 024 treatment at doses tested further led to a concentration-dependent inhibition of the LPS-induced phosphorylation (activation) of p38 mitogen-activated protein kinase (MAPK) without influencing its total protein expression in BV2 cells, but it did not affect the LPS-induced activation of c-jun N-terminal kinase-1/2 and extracellular signal-regulated kinases-1/2 in these cells. In summary, our results demonstrate that CNU 024 inhibits the LPS-induced iNOS expression in BV2 cells, partly mediated by the inhibition of p38 MAPK. This work shows that CNU 024 could be a valuable ligand for further development as a potential drug candidate for treating neuroinflammatory pathologies.\",\"PeriodicalId\":166951,\"journal\":{\"name\":\"Keimyung Medical Journal\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Keimyung Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46308/kmj.2022.00199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Keimyung Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46308/kmj.2022.00199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2-Aryl Propionic Acid Amide Modification of Naproxen and Ibuprofen Dimers for Anti-neuroinflammatory Activity in BV2 mouse Microglial Cells
Inflammation is a common link in the pathophysiology of many neurological illnesses, including Alzheimer’s disease. Activated glial cells contribute to neuroinflammation by producing pro-inflammatory mediators. Naproxen and ibuprofen are nonsteroidal anti-inflammatory drugs with 2-aryl(s) propionic acid as a common pharmacophore. Here we designed a small series of naproxen and ibuprofen amide dimers and tested their effects on the expression of inducible nitric oxide synthase (iNOS), a neuroinflammatory enzyme in lipopolysaccharide (LPS)-stimulated BV2 mouse microglial cells. Of note, treatment with CNU 019, 020, 021, 023, 024, and 027 at 10 M markedly inhibited the LPS-induced iNOS expression in BV2 cells. CNU 024 was tested further at different concentrations to regulate the LPS-induced iNOS expression in BV2 cells. Treatment with CNU 024 at 5, 10, or 20 M dose-dependently suppressed the LPS-induced iNOS protein and mRNA expression levels in BV2 cells, in which maximal inhibition was seen at 20 M. CNU 024 treatment at doses tested further led to a concentration-dependent inhibition of the LPS-induced phosphorylation (activation) of p38 mitogen-activated protein kinase (MAPK) without influencing its total protein expression in BV2 cells, but it did not affect the LPS-induced activation of c-jun N-terminal kinase-1/2 and extracellular signal-regulated kinases-1/2 in these cells. In summary, our results demonstrate that CNU 024 inhibits the LPS-induced iNOS expression in BV2 cells, partly mediated by the inhibition of p38 MAPK. This work shows that CNU 024 could be a valuable ligand for further development as a potential drug candidate for treating neuroinflammatory pathologies.