{"title":"基于反向回溯搜索算法的经济负荷调度","authors":"Moumita Pradhan, P. Roy, T. Pal","doi":"10.4018/IJEOE.2017040105","DOIUrl":null,"url":null,"abstract":"In this paper, an oppositional backtracking search algorithm (OBSA) is proposed to solve the large scale economic load dispatch (ELD) problem. The main drawback of the conventional backtracking search algorithm (BSA) is that it produces a local optimal solution rather than the global optimal solution. The proposed OBSA methodology is a highly-constrained optimization problem has to minimize the total generation cost by satisfying several constraints involving load demand, generation limits, prohibited operating zone, ramp rate limits and valve point loading effect. The proposed method is applied for three test systems and provides the unique and fast solutions. The new heuristic OBSA approach is successfully applied in three test systems consisting of 13 and 140 thermal generators. The test results are judged against various methods. The simulation results show the effectiveness and accuracy of the proposed OBSA algorithm over other methods like conventional BSA, oppositional invasive weed optimization (OIWO), Shuffled differential evolution (SDE) and oppositional real coded chemical reaction optimization (ORCCRO). This clearly suggests that the new OBSA method can achieve effective and feasible solutions of nonlinear ELD problems.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Economic Load Dispatch Using Oppositional Backtracking Search Algorithm\",\"authors\":\"Moumita Pradhan, P. Roy, T. Pal\",\"doi\":\"10.4018/IJEOE.2017040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an oppositional backtracking search algorithm (OBSA) is proposed to solve the large scale economic load dispatch (ELD) problem. The main drawback of the conventional backtracking search algorithm (BSA) is that it produces a local optimal solution rather than the global optimal solution. The proposed OBSA methodology is a highly-constrained optimization problem has to minimize the total generation cost by satisfying several constraints involving load demand, generation limits, prohibited operating zone, ramp rate limits and valve point loading effect. The proposed method is applied for three test systems and provides the unique and fast solutions. The new heuristic OBSA approach is successfully applied in three test systems consisting of 13 and 140 thermal generators. The test results are judged against various methods. The simulation results show the effectiveness and accuracy of the proposed OBSA algorithm over other methods like conventional BSA, oppositional invasive weed optimization (OIWO), Shuffled differential evolution (SDE) and oppositional real coded chemical reaction optimization (ORCCRO). This clearly suggests that the new OBSA method can achieve effective and feasible solutions of nonlinear ELD problems.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2017040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2017040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Economic Load Dispatch Using Oppositional Backtracking Search Algorithm
In this paper, an oppositional backtracking search algorithm (OBSA) is proposed to solve the large scale economic load dispatch (ELD) problem. The main drawback of the conventional backtracking search algorithm (BSA) is that it produces a local optimal solution rather than the global optimal solution. The proposed OBSA methodology is a highly-constrained optimization problem has to minimize the total generation cost by satisfying several constraints involving load demand, generation limits, prohibited operating zone, ramp rate limits and valve point loading effect. The proposed method is applied for three test systems and provides the unique and fast solutions. The new heuristic OBSA approach is successfully applied in three test systems consisting of 13 and 140 thermal generators. The test results are judged against various methods. The simulation results show the effectiveness and accuracy of the proposed OBSA algorithm over other methods like conventional BSA, oppositional invasive weed optimization (OIWO), Shuffled differential evolution (SDE) and oppositional real coded chemical reaction optimization (ORCCRO). This clearly suggests that the new OBSA method can achieve effective and feasible solutions of nonlinear ELD problems.