Sunil Rao, Deep Pujara, A. Spanias, C. Tepedelenlioğlu, Devarajan Srinivasan
{"title":"基于神经网络的太阳能阵列实时数据采集与故障检测","authors":"Sunil Rao, Deep Pujara, A. Spanias, C. Tepedelenlioğlu, Devarajan Srinivasan","doi":"10.1109/ICPS58381.2023.10128030","DOIUrl":null,"url":null,"abstract":"Continuous real-time solar system monitoring for fault detection and classification can improve solar panel efficiency and overall output. In this study, we developed and implemented a real-time PV fault detection system based on machine learning. The system was implemented on an 18kW testbed facility which consists of 104 solar panels located at the ASU Research Park. Each solar panel is connected to a smart monitoring device (SMD) which obtains real-time voltage and current measurements. SMDs are attached to each panel and transmit all the acquired data to a server that is connected to the internet. We implement fault detection using real-time measurements and various neural network architectures. We train and test both fully connected and dropout neural networks with different dropout regularization. We use both a real-time dataset and a synthetic dataset and present comparative results. We train and classify for the following conditions: soiled panels, shaded and degraded panels, and standard test conditions.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Solar Array Data Acquisition and Fault Detection using Neural Networks\",\"authors\":\"Sunil Rao, Deep Pujara, A. Spanias, C. Tepedelenlioğlu, Devarajan Srinivasan\",\"doi\":\"10.1109/ICPS58381.2023.10128030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous real-time solar system monitoring for fault detection and classification can improve solar panel efficiency and overall output. In this study, we developed and implemented a real-time PV fault detection system based on machine learning. The system was implemented on an 18kW testbed facility which consists of 104 solar panels located at the ASU Research Park. Each solar panel is connected to a smart monitoring device (SMD) which obtains real-time voltage and current measurements. SMDs are attached to each panel and transmit all the acquired data to a server that is connected to the internet. We implement fault detection using real-time measurements and various neural network architectures. We train and test both fully connected and dropout neural networks with different dropout regularization. We use both a real-time dataset and a synthetic dataset and present comparative results. We train and classify for the following conditions: soiled panels, shaded and degraded panels, and standard test conditions.\",\"PeriodicalId\":426122,\"journal\":{\"name\":\"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS58381.2023.10128030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10128030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Solar Array Data Acquisition and Fault Detection using Neural Networks
Continuous real-time solar system monitoring for fault detection and classification can improve solar panel efficiency and overall output. In this study, we developed and implemented a real-time PV fault detection system based on machine learning. The system was implemented on an 18kW testbed facility which consists of 104 solar panels located at the ASU Research Park. Each solar panel is connected to a smart monitoring device (SMD) which obtains real-time voltage and current measurements. SMDs are attached to each panel and transmit all the acquired data to a server that is connected to the internet. We implement fault detection using real-time measurements and various neural network architectures. We train and test both fully connected and dropout neural networks with different dropout regularization. We use both a real-time dataset and a synthetic dataset and present comparative results. We train and classify for the following conditions: soiled panels, shaded and degraded panels, and standard test conditions.