深度脑电信号高频振荡的主频率估计

M. Shamas, I. Merlet, Anca Nica, P. Benquet, M. Khalil, Wassim El Faou, F. Wendling
{"title":"深度脑电信号高频振荡的主频率估计","authors":"M. Shamas, I. Merlet, Anca Nica, P. Benquet, M. Khalil, Wassim El Faou, F. Wendling","doi":"10.1109/ICABME.2017.8167561","DOIUrl":null,"url":null,"abstract":"Pathological high-frequency oscillations (HFOs, 200–600 Hz) observed in depth-EEG and on scalp EEG recordings are recognized to be potentially valuable biomarkers of the epileptogenic zone responsible for generating seizures. Many research studies have been dedicated to detect, classify, simulate and understand the underlying mechanisms responsible for their generation. However, broadly classifying the HFOs into classes of wide frequency bands may negatively impact the quality of information carried by these electrophysiological biomarkers. In this paper, we perform a comparative study of various signal processing methods for estimating the dominant frequency of HFOs. The novelty is to make use of a physiologically-plausible computational model in which the HFO frequency can be tuned a priori. Results indicate that non-parametric methods best estimate the frequency of the low-amplitude fast oscillations characteristic of HFOs.","PeriodicalId":426559,"journal":{"name":"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating the dominant frequency of High Frequency Oscillations in depth-EEG signals\",\"authors\":\"M. Shamas, I. Merlet, Anca Nica, P. Benquet, M. Khalil, Wassim El Faou, F. Wendling\",\"doi\":\"10.1109/ICABME.2017.8167561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathological high-frequency oscillations (HFOs, 200–600 Hz) observed in depth-EEG and on scalp EEG recordings are recognized to be potentially valuable biomarkers of the epileptogenic zone responsible for generating seizures. Many research studies have been dedicated to detect, classify, simulate and understand the underlying mechanisms responsible for their generation. However, broadly classifying the HFOs into classes of wide frequency bands may negatively impact the quality of information carried by these electrophysiological biomarkers. In this paper, we perform a comparative study of various signal processing methods for estimating the dominant frequency of HFOs. The novelty is to make use of a physiologically-plausible computational model in which the HFO frequency can be tuned a priori. Results indicate that non-parametric methods best estimate the frequency of the low-amplitude fast oscillations characteristic of HFOs.\",\"PeriodicalId\":426559,\"journal\":{\"name\":\"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICABME.2017.8167561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICABME.2017.8167561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在深度脑电图和头皮脑电图记录中观察到的病理性高频振荡(HFOs, 200 - 600hz)被认为是诱发癫痫发作的潜在有价值的生物标志物。许多研究都致力于检测、分类、模拟和理解导致它们产生的潜在机制。然而,将hfo广泛划分为宽频带可能会对这些电生理生物标志物携带的信息质量产生负面影响。在本文中,我们对各种信号处理方法进行了比较研究,以估计hfo的主导频率。新颖之处在于利用一种生理上合理的计算模型,在该模型中,HFO频率可以先验地调谐。结果表明,非参数方法能较好地估计hfo低振幅快速振荡特性的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the dominant frequency of High Frequency Oscillations in depth-EEG signals
Pathological high-frequency oscillations (HFOs, 200–600 Hz) observed in depth-EEG and on scalp EEG recordings are recognized to be potentially valuable biomarkers of the epileptogenic zone responsible for generating seizures. Many research studies have been dedicated to detect, classify, simulate and understand the underlying mechanisms responsible for their generation. However, broadly classifying the HFOs into classes of wide frequency bands may negatively impact the quality of information carried by these electrophysiological biomarkers. In this paper, we perform a comparative study of various signal processing methods for estimating the dominant frequency of HFOs. The novelty is to make use of a physiologically-plausible computational model in which the HFO frequency can be tuned a priori. Results indicate that non-parametric methods best estimate the frequency of the low-amplitude fast oscillations characteristic of HFOs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信