任意长静止目标的自适应背景模型

Peng Li, Chenhao Wang, Chongjing Wang, Yuncai Liu
{"title":"任意长静止目标的自适应背景模型","authors":"Peng Li, Chenhao Wang, Chongjing Wang, Yuncai Liu","doi":"10.1109/ICIG.2011.106","DOIUrl":null,"url":null,"abstract":"Background reconstruction plays an important role in many applications like video surveillance, motion analysis. Traditional Adaptive Gaussian Mixture Model will lose target when deal with arbitrary-long stationary object. In this paper, a novel method for detecting this kind of object is proposed to improve the performance of Adaptive Gaussian Mixture Model. Parameter restoration is designed to deal with arbitrary-long stationary target and solve the short-comings of the latest algorithm. The parameters among the K distribution of each pixel covered by the object will be restored when the object stayed for over threshold frames. Then the target will not be updated as a part of background model. Experimental results show that the proposed algorithm proves to be a more robust method by detecting the stationary target in an arbitrary-long time.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Background Model for Arbitrary-Long Stationary Target\",\"authors\":\"Peng Li, Chenhao Wang, Chongjing Wang, Yuncai Liu\",\"doi\":\"10.1109/ICIG.2011.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background reconstruction plays an important role in many applications like video surveillance, motion analysis. Traditional Adaptive Gaussian Mixture Model will lose target when deal with arbitrary-long stationary object. In this paper, a novel method for detecting this kind of object is proposed to improve the performance of Adaptive Gaussian Mixture Model. Parameter restoration is designed to deal with arbitrary-long stationary target and solve the short-comings of the latest algorithm. The parameters among the K distribution of each pixel covered by the object will be restored when the object stayed for over threshold frames. Then the target will not be updated as a part of background model. Experimental results show that the proposed algorithm proves to be a more robust method by detecting the stationary target in an arbitrary-long time.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景重建在视频监控、运动分析等应用中发挥着重要作用。传统的自适应高斯混合模型在处理任意长度的静止目标时会失去目标。为了提高自适应高斯混合模型的性能,本文提出了一种检测此类目标的新方法。参数恢复是针对任意长平稳目标而设计的,解决了最新算法的不足。当物体停留超过阈值帧时,物体所覆盖的每个像素K分布之间的参数将被恢复。那么目标将不会作为背景模型的一部分被更新。实验结果表明,该算法可以在任意长时间内检测静止目标,具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Background Model for Arbitrary-Long Stationary Target
Background reconstruction plays an important role in many applications like video surveillance, motion analysis. Traditional Adaptive Gaussian Mixture Model will lose target when deal with arbitrary-long stationary object. In this paper, a novel method for detecting this kind of object is proposed to improve the performance of Adaptive Gaussian Mixture Model. Parameter restoration is designed to deal with arbitrary-long stationary target and solve the short-comings of the latest algorithm. The parameters among the K distribution of each pixel covered by the object will be restored when the object stayed for over threshold frames. Then the target will not be updated as a part of background model. Experimental results show that the proposed algorithm proves to be a more robust method by detecting the stationary target in an arbitrary-long time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信