I. Velikanov, V. Isaev, D. Bannikov, A. Tikhonov, L. Semin, L. Belyakova, D. Kuznetsov
{"title":"新的裂缝流体力学和原位动力学模型支持全面的水力裂缝模拟","authors":"I. Velikanov, V. Isaev, D. Bannikov, A. Tikhonov, L. Semin, L. Belyakova, D. Kuznetsov","doi":"10.2118/190760-MS","DOIUrl":null,"url":null,"abstract":"\n We demonstrate the advantages of a new hydraulic fracturing simulator comprising a fine-scale fracture hydrodynamics and in-situ kinetics model. In contrast to existing commercial modeling tools, it has a sufficient resolution and other functionality for adequate representation of modern stimulation technologies: pulsing injection of proppant, mixtures of multiple fracturing materials (fluids, proppants, fibers, etc.), materials degradation, etc. This simulator accounts for the influence of materials distribution on fracture propagation and calculates fracture conductivity distribution. We coupled it with a production simulation model and established a complete framework for hydraulic fracturing treatment design. In addition to the selection of the pumping schedule, this model can be used to define specifications for novel hydraulic fracturing materials. This is a step change tool for wellbore stimulation and production forecast.","PeriodicalId":178883,"journal":{"name":"Day 4 Thu, June 14, 2018","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"New Fracture Hydrodynamics and In-Situ Kinetics Model Supports Comprehensive Hydraulic Fracture Simulation\",\"authors\":\"I. Velikanov, V. Isaev, D. Bannikov, A. Tikhonov, L. Semin, L. Belyakova, D. Kuznetsov\",\"doi\":\"10.2118/190760-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We demonstrate the advantages of a new hydraulic fracturing simulator comprising a fine-scale fracture hydrodynamics and in-situ kinetics model. In contrast to existing commercial modeling tools, it has a sufficient resolution and other functionality for adequate representation of modern stimulation technologies: pulsing injection of proppant, mixtures of multiple fracturing materials (fluids, proppants, fibers, etc.), materials degradation, etc. This simulator accounts for the influence of materials distribution on fracture propagation and calculates fracture conductivity distribution. We coupled it with a production simulation model and established a complete framework for hydraulic fracturing treatment design. In addition to the selection of the pumping schedule, this model can be used to define specifications for novel hydraulic fracturing materials. This is a step change tool for wellbore stimulation and production forecast.\",\"PeriodicalId\":178883,\"journal\":{\"name\":\"Day 4 Thu, June 14, 2018\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, June 14, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/190760-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 14, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/190760-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Fracture Hydrodynamics and In-Situ Kinetics Model Supports Comprehensive Hydraulic Fracture Simulation
We demonstrate the advantages of a new hydraulic fracturing simulator comprising a fine-scale fracture hydrodynamics and in-situ kinetics model. In contrast to existing commercial modeling tools, it has a sufficient resolution and other functionality for adequate representation of modern stimulation technologies: pulsing injection of proppant, mixtures of multiple fracturing materials (fluids, proppants, fibers, etc.), materials degradation, etc. This simulator accounts for the influence of materials distribution on fracture propagation and calculates fracture conductivity distribution. We coupled it with a production simulation model and established a complete framework for hydraulic fracturing treatment design. In addition to the selection of the pumping schedule, this model can be used to define specifications for novel hydraulic fracturing materials. This is a step change tool for wellbore stimulation and production forecast.