基于SAM最小波段分配方法的多光谱和高光谱数据融合

Daniele Picone, R. Restaino, G. Vivone, P. Addesso, M. Mura, J. Chanussot
{"title":"基于SAM最小波段分配方法的多光谱和高光谱数据融合","authors":"Daniele Picone, R. Restaino, G. Vivone, P. Addesso, M. Mura, J. Chanussot","doi":"10.1109/WHISPERS.2016.8071722","DOIUrl":null,"url":null,"abstract":"The sharpening of hyperspectral (HS) images introduces novel questions that have never been faced by classical pansharpening, which deals with the fusion of multispectral and panchromatic images. In this paper, we focus on the fusion of high resolution MultiSpectral (MS) and low resolution HS data, namely tackling the problem of assigning the optimal MS channel for each HS band through the minimization of the Spectral Angle Mapper (SAM) metric. The performance is assessed on two datasets, both composed by a HS and a MS image acquired by the Hyperion and the ALI sensors, respectively. Several MultiResolution Analysis pansharpening approaches are used for evaluating the performance improvements with respect to existing methods.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multispectral and hyperspectral data fusion based on SAM minimization band assignment approach\",\"authors\":\"Daniele Picone, R. Restaino, G. Vivone, P. Addesso, M. Mura, J. Chanussot\",\"doi\":\"10.1109/WHISPERS.2016.8071722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sharpening of hyperspectral (HS) images introduces novel questions that have never been faced by classical pansharpening, which deals with the fusion of multispectral and panchromatic images. In this paper, we focus on the fusion of high resolution MultiSpectral (MS) and low resolution HS data, namely tackling the problem of assigning the optimal MS channel for each HS band through the minimization of the Spectral Angle Mapper (SAM) metric. The performance is assessed on two datasets, both composed by a HS and a MS image acquired by the Hyperion and the ALI sensors, respectively. Several MultiResolution Analysis pansharpening approaches are used for evaluating the performance improvements with respect to existing methods.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高光谱(HS)图像的锐化涉及多光谱和全色图像的融合,引入了经典泛锐化从未面临的新问题。本文主要研究高分辨率多光谱(MS)和低分辨率HS数据的融合,即通过最小化谱角映射器(SAM)度量来解决每个HS波段分配最佳MS通道的问题。性能在两个数据集上进行了评估,这两个数据集分别由Hyperion和ALI传感器获取的HS和MS图像组成。几种多分辨率分析泛锐化方法用于评估相对于现有方法的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral and hyperspectral data fusion based on SAM minimization band assignment approach
The sharpening of hyperspectral (HS) images introduces novel questions that have never been faced by classical pansharpening, which deals with the fusion of multispectral and panchromatic images. In this paper, we focus on the fusion of high resolution MultiSpectral (MS) and low resolution HS data, namely tackling the problem of assigning the optimal MS channel for each HS band through the minimization of the Spectral Angle Mapper (SAM) metric. The performance is assessed on two datasets, both composed by a HS and a MS image acquired by the Hyperion and the ALI sensors, respectively. Several MultiResolution Analysis pansharpening approaches are used for evaluating the performance improvements with respect to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信