Brian Mattis, T. Huffman, Bryan Woo, Jason Andrach
{"title":"高延迟密度单片超低损耗Si3N4 / Si光子平台","authors":"Brian Mattis, T. Huffman, Bryan Woo, Jason Andrach","doi":"10.1109/SiPhotonics55903.2023.10141956","DOIUrl":null,"url":null,"abstract":"We demonstrate a photonic platform that monolithically combines traditional crystalline Si waveguides and ultra-low-loss Si3N4 waveguides (1.6dB/m) in a foundry-ready process. The material co-integration demonstrates high-density low loss delays and high-speed switch capabilities traditionally out of reach of Si3N4-only platforms, enabling high-performance analog photonics.","PeriodicalId":105710,"journal":{"name":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic Ultra-Low-Loss Si3N4 / Si Photonic Platform for High Delay Density\",\"authors\":\"Brian Mattis, T. Huffman, Bryan Woo, Jason Andrach\",\"doi\":\"10.1109/SiPhotonics55903.2023.10141956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a photonic platform that monolithically combines traditional crystalline Si waveguides and ultra-low-loss Si3N4 waveguides (1.6dB/m) in a foundry-ready process. The material co-integration demonstrates high-density low loss delays and high-speed switch capabilities traditionally out of reach of Si3N4-only platforms, enabling high-performance analog photonics.\",\"PeriodicalId\":105710,\"journal\":{\"name\":\"2023 IEEE Silicon Photonics Conference (SiPhotonics)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Silicon Photonics Conference (SiPhotonics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPhotonics55903.2023.10141956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPhotonics55903.2023.10141956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monolithic Ultra-Low-Loss Si3N4 / Si Photonic Platform for High Delay Density
We demonstrate a photonic platform that monolithically combines traditional crystalline Si waveguides and ultra-low-loss Si3N4 waveguides (1.6dB/m) in a foundry-ready process. The material co-integration demonstrates high-density low loss delays and high-speed switch capabilities traditionally out of reach of Si3N4-only platforms, enabling high-performance analog photonics.