海洋领域时空数据的异常检测

Vladimir Avram, U. Glässer, H. Y. Shahir
{"title":"海洋领域时空数据的异常检测","authors":"Vladimir Avram, U. Glässer, H. Y. Shahir","doi":"10.1109/ISI.2012.6284274","DOIUrl":null,"url":null,"abstract":"Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This paper explores a novel approach to representing spatiotemporal data for model-driven methods for detecting patterns of anomalous behaviour in spatiotemporal datasets.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Anomaly detection in spatiotemporal data in the maritime domain\",\"authors\":\"Vladimir Avram, U. Glässer, H. Y. Shahir\",\"doi\":\"10.1109/ISI.2012.6284274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This paper explores a novel approach to representing spatiotemporal data for model-driven methods for detecting patterns of anomalous behaviour in spatiotemporal datasets.\",\"PeriodicalId\":199734,\"journal\":{\"name\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2012.6284274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

海上安全对许多国家来说至关重要,因为它们要解决海上通道、港口和港口容易受到各种威胁和非法活动攻击的问题。随着时空数据量的不断增加,对海量数据的实时分析变得越来越困难。本文探讨了一种用于检测时空数据集中异常行为模式的模型驱动方法来表示时空数据的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly detection in spatiotemporal data in the maritime domain
Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This paper explores a novel approach to representing spatiotemporal data for model-driven methods for detecting patterns of anomalous behaviour in spatiotemporal datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信