环境条件下压电悬臂梁振动能量收集特性研究

Ran Wei, Peng Wang, W. Ko, P. Feng
{"title":"环境条件下压电悬臂梁振动能量收集特性研究","authors":"Ran Wei, Peng Wang, W. Ko, P. Feng","doi":"10.1109/ENERGYTECH.2013.6645299","DOIUrl":null,"url":null,"abstract":"We report on measurement and modeling of dynamic energy harvesters based on oscillating piezoelectric cantilevers, along with careful calibration of energy conversion properties of such devices in their dynamic responses. We employ thin-film lead zirconate titanate (PZT)-based cantilevers fabricated by laser micromachining, with efficient proof masses enabled by a heavy alloy with a low melting temperature (65°C) for tuning frequency and damping. By measuring devices with different circuit parameters, and analyzing the energy conversion in time-domain oscillations, we show a model that quantitatively reveals the effects of the loading circuit for energy harvesting. We also show the effects of device dimensions on their vibrations and converted voltage output waveforms. In harvesting vibrational energy through cycles of oscillations (in 80Hz-1kHz devices), energy conversion efficiency as high as 25% has been attained.","PeriodicalId":154402,"journal":{"name":"2013 IEEE Energytech","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizing Piezoelectric Cantilevers for Vibration Energy Harvesting under Ambient Conditions\",\"authors\":\"Ran Wei, Peng Wang, W. Ko, P. Feng\",\"doi\":\"10.1109/ENERGYTECH.2013.6645299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on measurement and modeling of dynamic energy harvesters based on oscillating piezoelectric cantilevers, along with careful calibration of energy conversion properties of such devices in their dynamic responses. We employ thin-film lead zirconate titanate (PZT)-based cantilevers fabricated by laser micromachining, with efficient proof masses enabled by a heavy alloy with a low melting temperature (65°C) for tuning frequency and damping. By measuring devices with different circuit parameters, and analyzing the energy conversion in time-domain oscillations, we show a model that quantitatively reveals the effects of the loading circuit for energy harvesting. We also show the effects of device dimensions on their vibrations and converted voltage output waveforms. In harvesting vibrational energy through cycles of oscillations (in 80Hz-1kHz devices), energy conversion efficiency as high as 25% has been attained.\",\"PeriodicalId\":154402,\"journal\":{\"name\":\"2013 IEEE Energytech\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Energytech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYTECH.2013.6645299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Energytech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYTECH.2013.6645299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们报告了基于振动压电悬臂梁的动态能量采集器的测量和建模,以及此类设备在其动态响应中的能量转换特性的仔细校准。我们采用激光微加工制造的薄膜锆钛酸铅(PZT)基悬臂梁,具有高效的防护质量,由低熔化温度(65°C)的重合金实现,用于调谐频率和阻尼。通过测量具有不同电路参数的器件,并分析时域振荡中的能量转换,我们建立了一个模型,定量地揭示了负载电路对能量收集的影响。我们还展示了器件尺寸对其振动和转换电压输出波形的影响。在通过振荡周期(80Hz-1kHz设备)收集振动能量时,能量转换效率高达25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Piezoelectric Cantilevers for Vibration Energy Harvesting under Ambient Conditions
We report on measurement and modeling of dynamic energy harvesters based on oscillating piezoelectric cantilevers, along with careful calibration of energy conversion properties of such devices in their dynamic responses. We employ thin-film lead zirconate titanate (PZT)-based cantilevers fabricated by laser micromachining, with efficient proof masses enabled by a heavy alloy with a low melting temperature (65°C) for tuning frequency and damping. By measuring devices with different circuit parameters, and analyzing the energy conversion in time-domain oscillations, we show a model that quantitatively reveals the effects of the loading circuit for energy harvesting. We also show the effects of device dimensions on their vibrations and converted voltage output waveforms. In harvesting vibrational energy through cycles of oscillations (in 80Hz-1kHz devices), energy conversion efficiency as high as 25% has been attained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信