基于三次函数负定引理的延迟神经网络耗散分析

Chen Wei, Yong He, Xing-Chen Shangguan
{"title":"基于三次函数负定引理的延迟神经网络耗散分析","authors":"Chen Wei, Yong He, Xing-Chen Shangguan","doi":"10.1109/CAC57257.2022.10054814","DOIUrl":null,"url":null,"abstract":"Dissipative analysis about delayed neural networks is explored in the research. Firstly, the Firstly, the strengthened Lyapunov-Krasovskii functional (LKF) has been built. After that, the terms having time-varying delay cubic are then formed in the LKF’s derivative by disassembling the partial integral terms in the functional into the terms that contain time-varying delay. By using the negative definite lemma of cubic function to determine its negative qualitativeness, the low conservative dissipation condition of $({\\mathcal{Q}},{\\mathcal{S}},{\\mathcal{R}})$-γ-neural network is obtained. The developed criterion’s superiority and effectiveness is demonstrated by the numerical example at last.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative analysis of delayed neural networks based on the negative definite lemma of cubic functions\",\"authors\":\"Chen Wei, Yong He, Xing-Chen Shangguan\",\"doi\":\"10.1109/CAC57257.2022.10054814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissipative analysis about delayed neural networks is explored in the research. Firstly, the Firstly, the strengthened Lyapunov-Krasovskii functional (LKF) has been built. After that, the terms having time-varying delay cubic are then formed in the LKF’s derivative by disassembling the partial integral terms in the functional into the terms that contain time-varying delay. By using the negative definite lemma of cubic function to determine its negative qualitativeness, the low conservative dissipation condition of $({\\\\mathcal{Q}},{\\\\mathcal{S}},{\\\\mathcal{R}})$-γ-neural network is obtained. The developed criterion’s superiority and effectiveness is demonstrated by the numerical example at last.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10054814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10054814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究中探讨了延迟神经网络的耗散分析。首先,建立了增强Lyapunov-Krasovskii泛函(LKF)。然后,通过将泛函中的部分积分项分解为包含时变延迟的项,在LKF的导数中形成具有时变延迟三次的项。利用三次函数的负定引理确定其负定性,得到$({\mathcal{Q}},{\mathcal{S}},{\mathcal{R}})$-γ-神经网络的低保守耗散条件。最后通过数值算例验证了该准则的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative analysis of delayed neural networks based on the negative definite lemma of cubic functions
Dissipative analysis about delayed neural networks is explored in the research. Firstly, the Firstly, the strengthened Lyapunov-Krasovskii functional (LKF) has been built. After that, the terms having time-varying delay cubic are then formed in the LKF’s derivative by disassembling the partial integral terms in the functional into the terms that contain time-varying delay. By using the negative definite lemma of cubic function to determine its negative qualitativeness, the low conservative dissipation condition of $({\mathcal{Q}},{\mathcal{S}},{\mathcal{R}})$-γ-neural network is obtained. The developed criterion’s superiority and effectiveness is demonstrated by the numerical example at last.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信