使用机器学习支持双目视觉质量预测

Shanshan Wang, F. Shao, G. Jiang
{"title":"使用机器学习支持双目视觉质量预测","authors":"Shanshan Wang, F. Shao, G. Jiang","doi":"10.1109/ICMEW.2014.6890547","DOIUrl":null,"url":null,"abstract":"We present a binocular visual quality prediction model using machine learning (ML). The model includes two steps: training and test phases. To be more specific, we first construct the feature vector from binocular energy response of stereoscopic images with different stimuli of orientations, spatial frequencies and phase shifts, and then use ML to handle the actual mapping of the feature vector into quality scores in training procedure. Finally, quality score is predicted by multiple iterations in test procedure. Experimental results on three publicly available 3D image quality assessment databases demonstrate that, in comparison with the most related existing methods, the proposed technique achieves comparatively consistent performance with subjective assessment.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Supporting binocular visual quality prediction using machine learning\",\"authors\":\"Shanshan Wang, F. Shao, G. Jiang\",\"doi\":\"10.1109/ICMEW.2014.6890547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a binocular visual quality prediction model using machine learning (ML). The model includes two steps: training and test phases. To be more specific, we first construct the feature vector from binocular energy response of stereoscopic images with different stimuli of orientations, spatial frequencies and phase shifts, and then use ML to handle the actual mapping of the feature vector into quality scores in training procedure. Finally, quality score is predicted by multiple iterations in test procedure. Experimental results on three publicly available 3D image quality assessment databases demonstrate that, in comparison with the most related existing methods, the proposed technique achieves comparatively consistent performance with subjective assessment.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个使用机器学习(ML)的双目视觉质量预测模型。该模型包括两个步骤:训练和测试阶段。更具体地说,我们首先从立体图像在不同方向、空间频率和相移刺激下的双目能量响应中构建特征向量,然后在训练过程中使用ML处理特征向量实际映射到质量分数。最后,通过测试过程中的多次迭代来预测质量分数。在三个公开的三维图像质量评估数据库上的实验结果表明,与大多数相关的现有方法相比,所提出的技术与主观评价的性能比较一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supporting binocular visual quality prediction using machine learning
We present a binocular visual quality prediction model using machine learning (ML). The model includes two steps: training and test phases. To be more specific, we first construct the feature vector from binocular energy response of stereoscopic images with different stimuli of orientations, spatial frequencies and phase shifts, and then use ML to handle the actual mapping of the feature vector into quality scores in training procedure. Finally, quality score is predicted by multiple iterations in test procedure. Experimental results on three publicly available 3D image quality assessment databases demonstrate that, in comparison with the most related existing methods, the proposed technique achieves comparatively consistent performance with subjective assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信