Mamdani模糊模型学习方法的有效实现

L. Schnitman, T. Yoneyama
{"title":"Mamdani模糊模型学习方法的有效实现","authors":"L. Schnitman, T. Yoneyama","doi":"10.1109/SBRN.2000.889710","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient implementation of a supervised learning method based on membership function training in the context of Mamdani fuzzy models. The main idea is to adjust the antecedent and consequent membership functions that are of asymmetric trapezoidal form by backpropagating the output error through the fuzzy net. The proposed implementation is analogous to the training scheme commonly used with Takagi-Sugeno fuzzy models but it requires additional procedures that are related to some specific characteristics of the Mamdani fuzzy structures. Some numerical results are provided as illustrations.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An efficient implementation of a learning method for Mamdani fuzzy models\",\"authors\":\"L. Schnitman, T. Yoneyama\",\"doi\":\"10.1109/SBRN.2000.889710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient implementation of a supervised learning method based on membership function training in the context of Mamdani fuzzy models. The main idea is to adjust the antecedent and consequent membership functions that are of asymmetric trapezoidal form by backpropagating the output error through the fuzzy net. The proposed implementation is analogous to the training scheme commonly used with Takagi-Sugeno fuzzy models but it requires additional procedures that are related to some specific characteristics of the Mamdani fuzzy structures. Some numerical results are provided as illustrations.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于隶属函数训练的监督学习方法在Mamdani模糊模型中的有效实现。其主要思想是通过模糊网络反向传播输出误差,调整不对称梯形的前、后隶属函数。所提出的实现类似于Takagi-Sugeno模糊模型通常使用的训练方案,但它需要与Mamdani模糊结构的某些特定特征相关的额外程序。给出了一些数值结果作为说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient implementation of a learning method for Mamdani fuzzy models
This paper presents an efficient implementation of a supervised learning method based on membership function training in the context of Mamdani fuzzy models. The main idea is to adjust the antecedent and consequent membership functions that are of asymmetric trapezoidal form by backpropagating the output error through the fuzzy net. The proposed implementation is analogous to the training scheme commonly used with Takagi-Sugeno fuzzy models but it requires additional procedures that are related to some specific characteristics of the Mamdani fuzzy structures. Some numerical results are provided as illustrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信