利用稀疏编码的视觉注意力引导图像抽象

Duan-Yu Chen, T. Chang
{"title":"利用稀疏编码的视觉注意力引导图像抽象","authors":"Duan-Yu Chen, T. Chang","doi":"10.1109/ISIC.2012.6449749","DOIUrl":null,"url":null,"abstract":"Given the increasing number of mobile platforms, a key technical challenge is how to provide efficient image processing application on resource-limited mobile devices. This paper proposes a novel technique for mobile image abstraction on mobile platform. In order to reduce the computation complexity, the image abstraction process is conducted on a cloud computing system. In this technique, captured images are analyzed to detect visual salient area, which is then provided for adaptive detail preservation of abstraction. To further reduce the image size for efficient transmission between mobile device and cloud computing system while maintaining the visual quality of abstracted image, the derived algorithm regards the salient regions as the dictionary in sparse representation, and selects the salient regions that minimize the residual output error iteratively, thus the resulting regions have a direct correspondence to the performance requirements of the given problem. Experimental results obtained using extensive datasets captured under uncontrolled conditions show the efficacy of the proposed system for conducting image abstraction on mobile platform using sparse representation.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual attention guided images abstraction using sparse coding\",\"authors\":\"Duan-Yu Chen, T. Chang\",\"doi\":\"10.1109/ISIC.2012.6449749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the increasing number of mobile platforms, a key technical challenge is how to provide efficient image processing application on resource-limited mobile devices. This paper proposes a novel technique for mobile image abstraction on mobile platform. In order to reduce the computation complexity, the image abstraction process is conducted on a cloud computing system. In this technique, captured images are analyzed to detect visual salient area, which is then provided for adaptive detail preservation of abstraction. To further reduce the image size for efficient transmission between mobile device and cloud computing system while maintaining the visual quality of abstracted image, the derived algorithm regards the salient regions as the dictionary in sparse representation, and selects the salient regions that minimize the residual output error iteratively, thus the resulting regions have a direct correspondence to the performance requirements of the given problem. Experimental results obtained using extensive datasets captured under uncontrolled conditions show the efficacy of the proposed system for conducting image abstraction on mobile platform using sparse representation.\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着移动平台数量的不断增加,如何在资源有限的移动设备上提供高效的图像处理应用是一个关键的技术挑战。提出了一种基于移动平台的移动图像提取新技术。为了降低计算复杂度,图像提取过程在云计算系统上进行。在该技术中,对捕获的图像进行分析以检测视觉显著区域,然后为抽象的自适应细节保留提供支持。为了在保持抽象图像的视觉质量的前提下,进一步减小图像尺寸,实现移动设备与云计算系统之间的高效传输,导出算法将显著区域作为稀疏表示的字典,迭代选择残差输出误差最小的显著区域,使得到的显著区域直接对应给定问题的性能要求。在非受控条件下捕获的大量数据集上获得的实验结果表明,该系统使用稀疏表示在移动平台上进行图像抽象的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual attention guided images abstraction using sparse coding
Given the increasing number of mobile platforms, a key technical challenge is how to provide efficient image processing application on resource-limited mobile devices. This paper proposes a novel technique for mobile image abstraction on mobile platform. In order to reduce the computation complexity, the image abstraction process is conducted on a cloud computing system. In this technique, captured images are analyzed to detect visual salient area, which is then provided for adaptive detail preservation of abstraction. To further reduce the image size for efficient transmission between mobile device and cloud computing system while maintaining the visual quality of abstracted image, the derived algorithm regards the salient regions as the dictionary in sparse representation, and selects the salient regions that minimize the residual output error iteratively, thus the resulting regions have a direct correspondence to the performance requirements of the given problem. Experimental results obtained using extensive datasets captured under uncontrolled conditions show the efficacy of the proposed system for conducting image abstraction on mobile platform using sparse representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信