零自旋相对论量子力学中的概率电流

T. Fulop, T. Matolcsi
{"title":"零自旋相对论量子力学中的概率电流","authors":"T. Fulop, T. Matolcsi","doi":"10.1142/9789811238406_0035","DOIUrl":null,"url":null,"abstract":"We show that the antisymmetric spinor tensor representation of spin-0 relativistic quantum mechanics provides a conserved current with positive definite timelike component, interpretable as probability density. The construction runs in complete analogy to the spin-1/2 case, and provides an analogously natural one-particle Hilbert space description for spin 0. Except for the free particle, the obtained formulation proves to be inequivalent to the one based on the Klein--Gordon equation. The second quantized version may lead to new field theoretical interaction terms for zero-spin particles.","PeriodicalId":146790,"journal":{"name":"Gribov-90 Memorial Volume","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROBABILITY CURRENT IN ZERO-SPIN RELATIVISTIC QUANTUM MECHANICS\",\"authors\":\"T. Fulop, T. Matolcsi\",\"doi\":\"10.1142/9789811238406_0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the antisymmetric spinor tensor representation of spin-0 relativistic quantum mechanics provides a conserved current with positive definite timelike component, interpretable as probability density. The construction runs in complete analogy to the spin-1/2 case, and provides an analogously natural one-particle Hilbert space description for spin 0. Except for the free particle, the obtained formulation proves to be inequivalent to the one based on the Klein--Gordon equation. The second quantized version may lead to new field theoretical interaction terms for zero-spin particles.\",\"PeriodicalId\":146790,\"journal\":{\"name\":\"Gribov-90 Memorial Volume\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gribov-90 Memorial Volume\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811238406_0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gribov-90 Memorial Volume","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811238406_0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了自旋为0的相对论量子力学的反对称旋量张量表示提供了一个具有正定类时分量的守恒电流,可解释为概率密度。该构造完全类似于自旋为1/2的情况,并提供了自旋为0的类似自然的单粒子希尔伯特空间描述。除自由粒子外,所得公式证明与基于克莱因—戈登方程的公式是不等价的。第二个量子化版本可能导致零自旋粒子的新的场理论相互作用项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROBABILITY CURRENT IN ZERO-SPIN RELATIVISTIC QUANTUM MECHANICS
We show that the antisymmetric spinor tensor representation of spin-0 relativistic quantum mechanics provides a conserved current with positive definite timelike component, interpretable as probability density. The construction runs in complete analogy to the spin-1/2 case, and provides an analogously natural one-particle Hilbert space description for spin 0. Except for the free particle, the obtained formulation proves to be inequivalent to the one based on the Klein--Gordon equation. The second quantized version may lead to new field theoretical interaction terms for zero-spin particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信