双正交小波变换

P. J. Fleet
{"title":"双正交小波变换","authors":"P. J. Fleet","doi":"10.1002/9781119555414.ch7","DOIUrl":null,"url":null,"abstract":"This chapter explains how to construct a biorthogonal filter pair that can be used to generate wavelet transformation matrices. It also explains how to construct short biorthogonal filter pairs. The chapter then develops techniques utilizing symmetric filters that minimize the problems caused by wrapping rows in the transformation. Before developing general algorithms for symmetric biorthogonal wavelet transformations and their inverses, one needs to know more about the relationship of the lengths of symmetric biorthogonal filter pairs. The chapter presents an algorithm for applying the symmetric biorthogonal transformation constructed from odd‐length biorthogonal filter pairs applied to vectors of even length N without justification. It also describes an algorithm for computing the symmetric biorthogonal transformation for even‐length filter pairs. Finally, the chapter presents the application of image compression and investigates the application of image pansharpening to which the biorthogonal wavelet transform is well‐suited.","PeriodicalId":273650,"journal":{"name":"Discrete Wavelet Transformations","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BIORTHOGONAL WAVELET TRANSFORMATIONS\",\"authors\":\"P. J. Fleet\",\"doi\":\"10.1002/9781119555414.ch7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter explains how to construct a biorthogonal filter pair that can be used to generate wavelet transformation matrices. It also explains how to construct short biorthogonal filter pairs. The chapter then develops techniques utilizing symmetric filters that minimize the problems caused by wrapping rows in the transformation. Before developing general algorithms for symmetric biorthogonal wavelet transformations and their inverses, one needs to know more about the relationship of the lengths of symmetric biorthogonal filter pairs. The chapter presents an algorithm for applying the symmetric biorthogonal transformation constructed from odd‐length biorthogonal filter pairs applied to vectors of even length N without justification. It also describes an algorithm for computing the symmetric biorthogonal transformation for even‐length filter pairs. Finally, the chapter presents the application of image compression and investigates the application of image pansharpening to which the biorthogonal wavelet transform is well‐suited.\",\"PeriodicalId\":273650,\"journal\":{\"name\":\"Discrete Wavelet Transformations\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Wavelet Transformations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119555414.ch7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Wavelet Transformations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119555414.ch7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章解释了如何构造一个双正交滤波器对来生成小波变换矩阵。并说明了如何构造短双正交滤波器对。然后,本章开发了利用对称过滤器的技术,以最大限度地减少在转换中包装行所引起的问题。在研究对称双正交小波变换及其逆变换的一般算法之前,我们需要更多地了解对称双正交滤波器对的长度关系。本章给出了一种将奇长双正交滤波器对构造的对称双正交变换应用于偶数长度N的向量而不加证明的算法。本文还描述了一种计算偶长滤波器对对称双正交变换的算法。最后,本章介绍了图像压缩的应用,并研究了双正交小波变换非常适合的图像泛锐化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIORTHOGONAL WAVELET TRANSFORMATIONS
This chapter explains how to construct a biorthogonal filter pair that can be used to generate wavelet transformation matrices. It also explains how to construct short biorthogonal filter pairs. The chapter then develops techniques utilizing symmetric filters that minimize the problems caused by wrapping rows in the transformation. Before developing general algorithms for symmetric biorthogonal wavelet transformations and their inverses, one needs to know more about the relationship of the lengths of symmetric biorthogonal filter pairs. The chapter presents an algorithm for applying the symmetric biorthogonal transformation constructed from odd‐length biorthogonal filter pairs applied to vectors of even length N without justification. It also describes an algorithm for computing the symmetric biorthogonal transformation for even‐length filter pairs. Finally, the chapter presents the application of image compression and investigates the application of image pansharpening to which the biorthogonal wavelet transform is well‐suited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信