基于属性序列的网络(树)拓扑推理

Vanniarajan Chellappan, K. Krithivasan
{"title":"基于属性序列的网络(树)拓扑推理","authors":"Vanniarajan Chellappan, K. Krithivasan","doi":"10.1109/NCC.2010.5430177","DOIUrl":null,"url":null,"abstract":"Network topology discovery is the basis for any network management application. The problem of estimating internal structure and link-level performance from end-to-end measurements is known as network tomography. This paper proposes a novel approach to discover network characteristics, in particular, tree topology from the hop count metric (distance) between OD (Origin — Destination) pairs. The proposed method is based on Prüfer encoding and decoding techniques of trees using this metric. The method also has the potential to minimize and avoid reliance on ICMP.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Network (tree) topology inference based on Prüfer sequence\",\"authors\":\"Vanniarajan Chellappan, K. Krithivasan\",\"doi\":\"10.1109/NCC.2010.5430177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network topology discovery is the basis for any network management application. The problem of estimating internal structure and link-level performance from end-to-end measurements is known as network tomography. This paper proposes a novel approach to discover network characteristics, in particular, tree topology from the hop count metric (distance) between OD (Origin — Destination) pairs. The proposed method is based on Prüfer encoding and decoding techniques of trees using this metric. The method also has the potential to minimize and avoid reliance on ICMP.\",\"PeriodicalId\":130953,\"journal\":{\"name\":\"2010 National Conference On Communications (NCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 National Conference On Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2010.5430177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

网络拓扑发现是任何网络管理应用程序的基础。从端到端测量中估计内部结构和链路级性能的问题被称为网络断层扫描。本文提出了一种新的方法来发现网络特征,特别是从OD (Origin - Destination)对之间的跳数度量(距离)来发现树拓扑。该方法基于基于该度量的树的首选编码和解码技术。该方法还可以最大限度地减少和避免对ICMP的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network (tree) topology inference based on Prüfer sequence
Network topology discovery is the basis for any network management application. The problem of estimating internal structure and link-level performance from end-to-end measurements is known as network tomography. This paper proposes a novel approach to discover network characteristics, in particular, tree topology from the hop count metric (distance) between OD (Origin — Destination) pairs. The proposed method is based on Prüfer encoding and decoding techniques of trees using this metric. The method also has the potential to minimize and avoid reliance on ICMP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信