Theta*-RRT和grip算法的实证评价

Zain Alabedeen Ali, Brian Angulo, V. Golovin, K. Yakovlev
{"title":"Theta*-RRT和grip算法的实证评价","authors":"Zain Alabedeen Ali, Brian Angulo, V. Golovin, K. Yakovlev","doi":"10.1109/SIBCON50419.2021.9438901","DOIUrl":null,"url":null,"abstract":"Motion planning is a fundamental task for wheeled mobile robots. This task becomes challenging when the kinematic constraints of the robot (differential-drive, car-like, etc.) are to be taken into account. In this work we analyze and empirically compare two promising approaches to construct kinematically-feasible trajectories for differential drive robots – Theta*-RRT and GRIPS. Both of these approaches utilize geometric path planning but differ in the way how it is done. Theta*-RRT relies on sampling-based planning biased towards the geometric path. GRIPS modifies the path and tries to connect its elements with the steering function that respects kinematic constraints. We evaluate both approaches in simulation and on the real robot highlighting their pros and cons. Our evaluation shows that there is no universal winner and we provide suggestions on when to use specific method.","PeriodicalId":150550,"journal":{"name":"2021 International Siberian Conference on Control and Communications (SIBCON)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Evaluation of Theta*-RRT and GRIPS Algorithms\",\"authors\":\"Zain Alabedeen Ali, Brian Angulo, V. Golovin, K. Yakovlev\",\"doi\":\"10.1109/SIBCON50419.2021.9438901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion planning is a fundamental task for wheeled mobile robots. This task becomes challenging when the kinematic constraints of the robot (differential-drive, car-like, etc.) are to be taken into account. In this work we analyze and empirically compare two promising approaches to construct kinematically-feasible trajectories for differential drive robots – Theta*-RRT and GRIPS. Both of these approaches utilize geometric path planning but differ in the way how it is done. Theta*-RRT relies on sampling-based planning biased towards the geometric path. GRIPS modifies the path and tries to connect its elements with the steering function that respects kinematic constraints. We evaluate both approaches in simulation and on the real robot highlighting their pros and cons. Our evaluation shows that there is no universal winner and we provide suggestions on when to use specific method.\",\"PeriodicalId\":150550,\"journal\":{\"name\":\"2021 International Siberian Conference on Control and Communications (SIBCON)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Siberian Conference on Control and Communications (SIBCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBCON50419.2021.9438901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON50419.2021.9438901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

运动规划是轮式移动机器人的一项基本任务。当考虑到机器人的运动学约束(差动驱动、类车等)时,这项任务变得具有挑战性。在这项工作中,我们分析和经验比较了两种有前途的方法来构建微分驱动机器人的运动学可行轨迹- Theta*- rrt和grip。这两种方法都利用几何路径规划,但在实现方式上有所不同。Theta*-RRT依赖于偏向几何路径的基于抽样的规划。grip修改路径,并尝试将其元素与尊重运动学约束的转向函数连接起来。我们在模拟和真实机器人上评估了这两种方法,突出了它们的优缺点。我们的评估表明,没有普遍的赢家,我们提供了何时使用特定方法的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Evaluation of Theta*-RRT and GRIPS Algorithms
Motion planning is a fundamental task for wheeled mobile robots. This task becomes challenging when the kinematic constraints of the robot (differential-drive, car-like, etc.) are to be taken into account. In this work we analyze and empirically compare two promising approaches to construct kinematically-feasible trajectories for differential drive robots – Theta*-RRT and GRIPS. Both of these approaches utilize geometric path planning but differ in the way how it is done. Theta*-RRT relies on sampling-based planning biased towards the geometric path. GRIPS modifies the path and tries to connect its elements with the steering function that respects kinematic constraints. We evaluate both approaches in simulation and on the real robot highlighting their pros and cons. Our evaluation shows that there is no universal winner and we provide suggestions on when to use specific method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信