基于近似动态规划的自适应最优观测器设计

J. Na, G. Herrmann, K. Vamvoudakis
{"title":"基于近似动态规划的自适应最优观测器设计","authors":"J. Na, G. Herrmann, K. Vamvoudakis","doi":"10.23919/ACC.2017.7963454","DOIUrl":null,"url":null,"abstract":"This paper presents an optimal observer design framework using a recently emerging method, approximate dynamic programming (ADP), to minimize a predefined cost function. We first exploit the duality between the linear optimal observer and the linear quadratic tracking (LQT) control. We show that the optimal observer design can be formulated as an optimal control problem subject to a specific cost function, and thus the solution can be obtained by solving an algebraic Riccati equation (ARE). For nonlinear systems, we further introduce an optimal observer design formulation and suggest a modified policy iteration method. Finally, to solve the problem online we propose a framework based on ADP and specifically on an approximator structure. Namely, a critic approximator is used to estimate the optimal value function, and a newly developed tuning law is proposed to find the parameters online. The stability and the performance are guaranteed with rigorous proofs. Numerical simulations are given to validate the theoretical studies.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Adaptive optimal observer design via approximate dynamic programming\",\"authors\":\"J. Na, G. Herrmann, K. Vamvoudakis\",\"doi\":\"10.23919/ACC.2017.7963454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimal observer design framework using a recently emerging method, approximate dynamic programming (ADP), to minimize a predefined cost function. We first exploit the duality between the linear optimal observer and the linear quadratic tracking (LQT) control. We show that the optimal observer design can be formulated as an optimal control problem subject to a specific cost function, and thus the solution can be obtained by solving an algebraic Riccati equation (ARE). For nonlinear systems, we further introduce an optimal observer design formulation and suggest a modified policy iteration method. Finally, to solve the problem online we propose a framework based on ADP and specifically on an approximator structure. Namely, a critic approximator is used to estimate the optimal value function, and a newly developed tuning law is proposed to find the parameters online. The stability and the performance are guaranteed with rigorous proofs. Numerical simulations are given to validate the theoretical studies.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种最优观测器设计框架,使用一种新出现的方法,近似动态规划(ADP),以最小化预定义的代价函数。我们首先利用线性最优观测器和线性二次跟踪(LQT)控制之间的对偶性。我们证明了最优观测器设计可以被表述为一个受特定成本函数约束的最优控制问题,因此可以通过求解代数Riccati方程(ARE)得到其解。对于非线性系统,我们进一步引入了最优观测器设计公式,并提出了一种改进的策略迭代方法。最后,为了在线解决这个问题,我们提出了一个基于ADP的框架,特别是一个近似器结构。即,使用一个临界逼近器来估计最优值函数,并提出了一种新的调谐律来在线查找参数。稳定性和性能有严格的证明保证。通过数值模拟验证了理论研究的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive optimal observer design via approximate dynamic programming
This paper presents an optimal observer design framework using a recently emerging method, approximate dynamic programming (ADP), to minimize a predefined cost function. We first exploit the duality between the linear optimal observer and the linear quadratic tracking (LQT) control. We show that the optimal observer design can be formulated as an optimal control problem subject to a specific cost function, and thus the solution can be obtained by solving an algebraic Riccati equation (ARE). For nonlinear systems, we further introduce an optimal observer design formulation and suggest a modified policy iteration method. Finally, to solve the problem online we propose a framework based on ADP and specifically on an approximator structure. Namely, a critic approximator is used to estimate the optimal value function, and a newly developed tuning law is proposed to find the parameters online. The stability and the performance are guaranteed with rigorous proofs. Numerical simulations are given to validate the theoretical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信