为PRTools提供基于模糊规则的分类器

M. Cococcioni, Eleonora D'Andrea, B. Lazzerini
{"title":"为PRTools提供基于模糊规则的分类器","authors":"M. Cococcioni, Eleonora D'Andrea, B. Lazzerini","doi":"10.1109/FUZZY.2010.5584343","DOIUrl":null,"url":null,"abstract":"This paper first reviews the state-of-the-art of fuzzy rule-based classifiers (FRBCs), then it discusses how to implement an FRBC under the Pattern Recognition Toolbox (PRTools), the de-facto standard toolbox for classification in Matlab. Such an implementation, called frbc, allows for a straightforward comparison of frbc with other classifiers already available under the PRTools. Furthermore, frbc can easily be used and combined with any other general-purpose function already available in PRTools. In this way, e.g., it becomes really easy to perform many types of feature selection, based on the accuracy achieved by frbc on the subset of features at hand. Another useful feature is the capability to export each FRBC generated by frbc as a standard Fuzzy Inference System (FIS) structure used within the Matlab Fuzzy Logic Toolbox (FLT): this allows comparisons/validations, visual inspection of the rule base, etc. In the experimental part we first assess the correctness of the implementation, by reproducing results existing in the literature. Then we show some examples of usage of frbc, combined with existing PRTools functions.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Providing PRTools with fuzzy rule-based classifiers\",\"authors\":\"M. Cococcioni, Eleonora D'Andrea, B. Lazzerini\",\"doi\":\"10.1109/FUZZY.2010.5584343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first reviews the state-of-the-art of fuzzy rule-based classifiers (FRBCs), then it discusses how to implement an FRBC under the Pattern Recognition Toolbox (PRTools), the de-facto standard toolbox for classification in Matlab. Such an implementation, called frbc, allows for a straightforward comparison of frbc with other classifiers already available under the PRTools. Furthermore, frbc can easily be used and combined with any other general-purpose function already available in PRTools. In this way, e.g., it becomes really easy to perform many types of feature selection, based on the accuracy achieved by frbc on the subset of features at hand. Another useful feature is the capability to export each FRBC generated by frbc as a standard Fuzzy Inference System (FIS) structure used within the Matlab Fuzzy Logic Toolbox (FLT): this allows comparisons/validations, visual inspection of the rule base, etc. In the experimental part we first assess the correctness of the implementation, by reproducing results existing in the literature. Then we show some examples of usage of frbc, combined with existing PRTools functions.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文首先回顾了基于模糊规则的分类器(FRBC)的最新进展,然后讨论了如何在模式识别工具箱(PRTools)下实现FRBC,模式识别工具箱是Matlab中事实上的标准分类工具箱。这样的实现称为frbc,它允许将frbc与PRTools下已有的其他分类器进行直接比较。此外,frbc可以很容易地与PRTools中已有的任何其他通用功能结合使用。通过这种方式,例如,基于frbc在手头特征子集上取得的精度,执行许多类型的特征选择变得非常容易。另一个有用的特性是能够将FRBC生成的每个FRBC导出为Matlab模糊逻辑工具箱(FLT)中使用的标准模糊推理系统(FIS)结构:这允许比较/验证,目视检查规则库等。在实验部分,我们首先通过再现文献中存在的结果来评估实现的正确性。然后,我们展示了一些使用frbc的例子,并结合了现有的PRTools函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Providing PRTools with fuzzy rule-based classifiers
This paper first reviews the state-of-the-art of fuzzy rule-based classifiers (FRBCs), then it discusses how to implement an FRBC under the Pattern Recognition Toolbox (PRTools), the de-facto standard toolbox for classification in Matlab. Such an implementation, called frbc, allows for a straightforward comparison of frbc with other classifiers already available under the PRTools. Furthermore, frbc can easily be used and combined with any other general-purpose function already available in PRTools. In this way, e.g., it becomes really easy to perform many types of feature selection, based on the accuracy achieved by frbc on the subset of features at hand. Another useful feature is the capability to export each FRBC generated by frbc as a standard Fuzzy Inference System (FIS) structure used within the Matlab Fuzzy Logic Toolbox (FLT): this allows comparisons/validations, visual inspection of the rule base, etc. In the experimental part we first assess the correctness of the implementation, by reproducing results existing in the literature. Then we show some examples of usage of frbc, combined with existing PRTools functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信