一种新的金属表面缺陷检测网络

Hao Wang, Mengjiao Li, Pengxiang Gao, Shumei Zhang
{"title":"一种新的金属表面缺陷检测网络","authors":"Hao Wang, Mengjiao Li, Pengxiang Gao, Shumei Zhang","doi":"10.1109/ICCS56273.2022.9988327","DOIUrl":null,"url":null,"abstract":"The detection of metal surface defects is an essential part of the industrial production process. Most of the current detection methods are poorly detected due to the diversity of metal surface defect morphologies and the complex reality of the environment. To address this problem, this paper proposes a novel metal surface defect detection network YOLOXD based on YOLOX, which is designed with Dilated Pyramid Pooling to increase the receptive field and introduces an attention mechanism to enhance feature extraction compared to YOLOX. And the Mish activation function is used to assist the model training. Our method achieves 78.45% $\\mathbf{mAP}$ in the proposed dataset.","PeriodicalId":382726,"journal":{"name":"2022 IEEE 2nd International Conference on Computer Systems (ICCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLOXD: A New Network for Metal Surface Defect Detection\",\"authors\":\"Hao Wang, Mengjiao Li, Pengxiang Gao, Shumei Zhang\",\"doi\":\"10.1109/ICCS56273.2022.9988327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of metal surface defects is an essential part of the industrial production process. Most of the current detection methods are poorly detected due to the diversity of metal surface defect morphologies and the complex reality of the environment. To address this problem, this paper proposes a novel metal surface defect detection network YOLOXD based on YOLOX, which is designed with Dilated Pyramid Pooling to increase the receptive field and introduces an attention mechanism to enhance feature extraction compared to YOLOX. And the Mish activation function is used to assist the model training. Our method achieves 78.45% $\\\\mathbf{mAP}$ in the proposed dataset.\",\"PeriodicalId\":382726,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Computer Systems (ICCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Computer Systems (ICCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS56273.2022.9988327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Computer Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS56273.2022.9988327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属表面缺陷的检测是工业生产过程中必不可少的一部分。由于金属表面缺陷形态的多样性和现实环境的复杂性,目前大多数检测方法的检测效果都很差。针对这一问题,本文提出了一种基于YOLOX的新型金属表面缺陷检测网络YOLOXD,该网络采用扩张金字塔池(Dilated Pyramid Pooling)设计来增加接收野,并引入注意机制来增强特征提取。并利用Mish激活函数辅助模型训练。我们的方法在建议的数据集中达到78.45% $\mathbf{mAP}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YOLOXD: A New Network for Metal Surface Defect Detection
The detection of metal surface defects is an essential part of the industrial production process. Most of the current detection methods are poorly detected due to the diversity of metal surface defect morphologies and the complex reality of the environment. To address this problem, this paper proposes a novel metal surface defect detection network YOLOXD based on YOLOX, which is designed with Dilated Pyramid Pooling to increase the receptive field and introduces an attention mechanism to enhance feature extraction compared to YOLOX. And the Mish activation function is used to assist the model training. Our method achieves 78.45% $\mathbf{mAP}$ in the proposed dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信