Xiaowei Pang, Zan Li, Xiaoming Chen, Yang Cao, Nan Zhao, Yunfei Chen, Z. Ding
{"title":"基于轨迹优化和预编码的无人机辅助NOMA网络","authors":"Xiaowei Pang, Zan Li, Xiaoming Chen, Yang Cao, Nan Zhao, Yunfei Chen, Z. Ding","doi":"10.1109/WCSP.2018.8555640","DOIUrl":null,"url":null,"abstract":"The explosive data traffic and connections in 5G networks require the use of non-orthogonal multiple access (NOMA) to accommodate more users. Unmanned aerial vehicle (UAV) can be exploited with NOMA to improve the situation further. In this paper, we propose a UAV-assisted NOMA network, in which the UAV and base station (BS) cooperate with each other to serve ground users simultaneously. First, the sum rate of the UAV-served users is maximized via alternate user scheduling and UAV trajectory, with its interference to the BS-served users below a threshold. Then, the optimal NOMA precoding vectors are obtained to cancel the interference from the BS to the UAV-served user. Numerical results are provided to evaluate the effectiveness of the proposed algorithms for the hybrid NOMA and UAV network.","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"UAV-Aided NOMA Networks with Optimization of Trajectory and Precoding\",\"authors\":\"Xiaowei Pang, Zan Li, Xiaoming Chen, Yang Cao, Nan Zhao, Yunfei Chen, Z. Ding\",\"doi\":\"10.1109/WCSP.2018.8555640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosive data traffic and connections in 5G networks require the use of non-orthogonal multiple access (NOMA) to accommodate more users. Unmanned aerial vehicle (UAV) can be exploited with NOMA to improve the situation further. In this paper, we propose a UAV-assisted NOMA network, in which the UAV and base station (BS) cooperate with each other to serve ground users simultaneously. First, the sum rate of the UAV-served users is maximized via alternate user scheduling and UAV trajectory, with its interference to the BS-served users below a threshold. Then, the optimal NOMA precoding vectors are obtained to cancel the interference from the BS to the UAV-served user. Numerical results are provided to evaluate the effectiveness of the proposed algorithms for the hybrid NOMA and UAV network.\",\"PeriodicalId\":423073,\"journal\":{\"name\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2018.8555640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UAV-Aided NOMA Networks with Optimization of Trajectory and Precoding
The explosive data traffic and connections in 5G networks require the use of non-orthogonal multiple access (NOMA) to accommodate more users. Unmanned aerial vehicle (UAV) can be exploited with NOMA to improve the situation further. In this paper, we propose a UAV-assisted NOMA network, in which the UAV and base station (BS) cooperate with each other to serve ground users simultaneously. First, the sum rate of the UAV-served users is maximized via alternate user scheduling and UAV trajectory, with its interference to the BS-served users below a threshold. Then, the optimal NOMA precoding vectors are obtained to cancel the interference from the BS to the UAV-served user. Numerical results are provided to evaluate the effectiveness of the proposed algorithms for the hybrid NOMA and UAV network.