{"title":"通过在线社交网络推荐旅游路线","authors":"C. Comito","doi":"10.1145/3341161.3345619","DOIUrl":null,"url":null,"abstract":"On line social networks (e.g., Facebook, Twitter) allow users to tag their posts with geographical coordinates collected through the GPS interface of smart phones. The time- and geo-coordinates associated with a sequence of tweets manifest the spatial-temporal movements of people in real life. The paper presents an approach to recommend travel routes to social media users exploiting historic mobility data, social features of users and geographic characteristics of locations. Travel routes recommendation is formulated as a ranking problem aiming at minimg the top interesting locations and travel sequences among them, and exploit such information to recommend the most suitable travel routes to a target user. A ranking function that exploits users' similarity in visiting locations and in travelling along mobility paths is used to predict places the user could like. The experimental results obtained by using a real-world dataset of tweets show that the proposed method is effective in recommending travel routes achieving remarkable precision and recall rates.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Travel Routes Recommendations via Online Social Networks\",\"authors\":\"C. Comito\",\"doi\":\"10.1145/3341161.3345619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On line social networks (e.g., Facebook, Twitter) allow users to tag their posts with geographical coordinates collected through the GPS interface of smart phones. The time- and geo-coordinates associated with a sequence of tweets manifest the spatial-temporal movements of people in real life. The paper presents an approach to recommend travel routes to social media users exploiting historic mobility data, social features of users and geographic characteristics of locations. Travel routes recommendation is formulated as a ranking problem aiming at minimg the top interesting locations and travel sequences among them, and exploit such information to recommend the most suitable travel routes to a target user. A ranking function that exploits users' similarity in visiting locations and in travelling along mobility paths is used to predict places the user could like. The experimental results obtained by using a real-world dataset of tweets show that the proposed method is effective in recommending travel routes achieving remarkable precision and recall rates.\",\"PeriodicalId\":403360,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341161.3345619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3345619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Travel Routes Recommendations via Online Social Networks
On line social networks (e.g., Facebook, Twitter) allow users to tag their posts with geographical coordinates collected through the GPS interface of smart phones. The time- and geo-coordinates associated with a sequence of tweets manifest the spatial-temporal movements of people in real life. The paper presents an approach to recommend travel routes to social media users exploiting historic mobility data, social features of users and geographic characteristics of locations. Travel routes recommendation is formulated as a ranking problem aiming at minimg the top interesting locations and travel sequences among them, and exploit such information to recommend the most suitable travel routes to a target user. A ranking function that exploits users' similarity in visiting locations and in travelling along mobility paths is used to predict places the user could like. The experimental results obtained by using a real-world dataset of tweets show that the proposed method is effective in recommending travel routes achieving remarkable precision and recall rates.