基于二维子空间分析和PNN的人脸识别方法

Benouis Mohamed, Scnouci B. Mohamed
{"title":"基于二维子空间分析和PNN的人脸识别方法","authors":"Benouis Mohamed, Scnouci B. Mohamed","doi":"10.1109/ISPS.2013.6581496","DOIUrl":null,"url":null,"abstract":"In this paper, we present an new approach to face recognition based on the combination of feature extraction methods, such as two-dimensional DWT-2DPCA and DWT-2DLDA, with a probabilistic neural networks. The technique 2D-DWT is used to eliminate the illumination, noise and redundancy of a face in order to reduce calculations of the probabilistic neural network operations.","PeriodicalId":222438,"journal":{"name":"2013 11th International Symposium on Programming and Systems (ISPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face recognition approach based on two-dimensional subspace analysis and PNN\",\"authors\":\"Benouis Mohamed, Scnouci B. Mohamed\",\"doi\":\"10.1109/ISPS.2013.6581496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an new approach to face recognition based on the combination of feature extraction methods, such as two-dimensional DWT-2DPCA and DWT-2DLDA, with a probabilistic neural networks. The technique 2D-DWT is used to eliminate the illumination, noise and redundancy of a face in order to reduce calculations of the probabilistic neural network operations.\",\"PeriodicalId\":222438,\"journal\":{\"name\":\"2013 11th International Symposium on Programming and Systems (ISPS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Symposium on Programming and Systems (ISPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPS.2013.6581496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2013.6581496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于二维DWT-2DPCA和DWT-2DLDA特征提取方法与概率神经网络相结合的人脸识别新方法。利用2D-DWT技术消除人脸的光照、噪声和冗余,以减少概率神经网络运算的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition approach based on two-dimensional subspace analysis and PNN
In this paper, we present an new approach to face recognition based on the combination of feature extraction methods, such as two-dimensional DWT-2DPCA and DWT-2DLDA, with a probabilistic neural networks. The technique 2D-DWT is used to eliminate the illumination, noise and redundancy of a face in order to reduce calculations of the probabilistic neural network operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信