利用兴趣探索改进矩阵分解的推荐性能

Wang Zhou, Jianping Li, R. Wu, Yanan Lu, Yujun Yang
{"title":"利用兴趣探索改进矩阵分解的推荐性能","authors":"Wang Zhou, Jianping Li, R. Wu, Yanan Lu, Yujun Yang","doi":"10.1109/ICCWAMTIP.2018.8632581","DOIUrl":null,"url":null,"abstract":"In this article, to improve the recommendation performance, we propose a novel recommender approach, which tries to learn the interest distribution for each user via Latent Dirichlet Allocation, and then incorporate it into matrix factorization. Empirical experiments over real world datasets indicate that the proposed method could achieve significant improvement in contrast to state-of-the-art approaches.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Recommendation Performance in Matrix Factorization with Interest Exploring\",\"authors\":\"Wang Zhou, Jianping Li, R. Wu, Yanan Lu, Yujun Yang\",\"doi\":\"10.1109/ICCWAMTIP.2018.8632581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, to improve the recommendation performance, we propose a novel recommender approach, which tries to learn the interest distribution for each user via Latent Dirichlet Allocation, and then incorporate it into matrix factorization. Empirical experiments over real world datasets indicate that the proposed method could achieve significant improvement in contrast to state-of-the-art approaches.\",\"PeriodicalId\":117919,\"journal\":{\"name\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2018.8632581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,为了提高推荐性能,我们提出了一种新的推荐方法,该方法试图通过潜在狄利克雷分配来学习每个用户的兴趣分布,然后将其纳入矩阵分解。在真实世界数据集上的经验实验表明,与最先进的方法相比,所提出的方法可以取得显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Recommendation Performance in Matrix Factorization with Interest Exploring
In this article, to improve the recommendation performance, we propose a novel recommender approach, which tries to learn the interest distribution for each user via Latent Dirichlet Allocation, and then incorporate it into matrix factorization. Empirical experiments over real world datasets indicate that the proposed method could achieve significant improvement in contrast to state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信