具有L2范数控制约束的抛物型最优控制问题的时空谱逼近

Zhenzhen Tao, Bing Sun
{"title":"具有L2范数控制约束的抛物型最优控制问题的时空谱逼近","authors":"Zhenzhen Tao, Bing Sun","doi":"10.1002/oca.3022","DOIUrl":null,"url":null,"abstract":"This article deals with the spectral approximation of an optimal control problem governed by a parabolic partial differential equation (PDE) with an L2$$ {L}^2 $$ ‐norm control constraint. The investigations employ the space−time spectral method, which is, more precisely, a dual Petrov‐Galerkin spectral method in time and a spectral method in space to discrete the continuous system. As a global method, it uses the global polynomials as the trial functions for discretization of PDEs. After obtaining the optimality condition of the continuous system and that of its spectral discrete surrogate, we establish a priori and a posteriori error estimates for the spectral approximation in detail. Three numerical examples in different spatial dimensions then confirm the theoretical results and also show the efficiency as well as a good precision of the adopted space−time spectral method.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space−time spectral approximations of a parabolic optimal control problem with an L2‐norm control constraint\",\"authors\":\"Zhenzhen Tao, Bing Sun\",\"doi\":\"10.1002/oca.3022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the spectral approximation of an optimal control problem governed by a parabolic partial differential equation (PDE) with an L2$$ {L}^2 $$ ‐norm control constraint. The investigations employ the space−time spectral method, which is, more precisely, a dual Petrov‐Galerkin spectral method in time and a spectral method in space to discrete the continuous system. As a global method, it uses the global polynomials as the trial functions for discretization of PDEs. After obtaining the optimality condition of the continuous system and that of its spectral discrete surrogate, we establish a priori and a posteriori error estimates for the spectral approximation in detail. Three numerical examples in different spatial dimensions then confirm the theoretical results and also show the efficiency as well as a good precision of the adopted space−time spectral method.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类具有L2 $$ {L}^2 $$ -范数控制约束的抛物型偏微分方程(PDE)的最优控制问题的谱逼近。研究采用时空谱方法,即时间上的二元Petrov - Galerkin谱方法和空间上的二元谱方法对连续系统进行离散。作为一种全局方法,它使用全局多项式作为微分方程离散化的试函数。在得到连续系统的最优性条件及其谱离散代理的最优性条件后,详细地建立了谱近似的先验和后验误差估计。三个不同空间维度的数值算例验证了理论结果,也证明了所采用的时空谱方法的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space−time spectral approximations of a parabolic optimal control problem with an L2‐norm control constraint
This article deals with the spectral approximation of an optimal control problem governed by a parabolic partial differential equation (PDE) with an L2$$ {L}^2 $$ ‐norm control constraint. The investigations employ the space−time spectral method, which is, more precisely, a dual Petrov‐Galerkin spectral method in time and a spectral method in space to discrete the continuous system. As a global method, it uses the global polynomials as the trial functions for discretization of PDEs. After obtaining the optimality condition of the continuous system and that of its spectral discrete surrogate, we establish a priori and a posteriori error estimates for the spectral approximation in detail. Three numerical examples in different spatial dimensions then confirm the theoretical results and also show the efficiency as well as a good precision of the adopted space−time spectral method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信