构建计算机网络管理软件自治代理

A. S. M. D. Franceschi, J. Barreto, M. Roisenberg
{"title":"构建计算机网络管理软件自治代理","authors":"A. S. M. D. Franceschi, J. Barreto, M. Roisenberg","doi":"10.1109/SBRN.2000.889755","DOIUrl":null,"url":null,"abstract":"Summary form only given. There are three important concepts in the computer network management area: managers, agents and managed objects. This work presents a methodology to develop autonomous agents for network management. There are two kinds of agents to develop: static or dynamic agents. The first one can be implemented, using heuristics obtained from an expert or the network administrator, through production rules or feedforward neural networks. Using the network examples we can construct dynamic agents. The recurrent neural network may be trained to solve a problem using some examples. Moreover, the behavior of the management must be considered, the network management may be reactive or proactive. From the analysis it is possible to define if the problem demands static or dynamic autonomous agents. The application of a static approach in the solution of dynamic problems cause two inconveniences: 1) it does not allow covering all the different states of a dynamic system; and 2) to cover all the states it would require a great neural network, perhaps impossible of converging to a solution.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing software autonomous agents to computer network management\",\"authors\":\"A. S. M. D. Franceschi, J. Barreto, M. Roisenberg\",\"doi\":\"10.1109/SBRN.2000.889755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. There are three important concepts in the computer network management area: managers, agents and managed objects. This work presents a methodology to develop autonomous agents for network management. There are two kinds of agents to develop: static or dynamic agents. The first one can be implemented, using heuristics obtained from an expert or the network administrator, through production rules or feedforward neural networks. Using the network examples we can construct dynamic agents. The recurrent neural network may be trained to solve a problem using some examples. Moreover, the behavior of the management must be considered, the network management may be reactive or proactive. From the analysis it is possible to define if the problem demands static or dynamic autonomous agents. The application of a static approach in the solution of dynamic problems cause two inconveniences: 1) it does not allow covering all the different states of a dynamic system; and 2) to cover all the states it would require a great neural network, perhaps impossible of converging to a solution.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。在计算机网络管理领域有三个重要的概念:管理器、代理和被管理对象。这项工作提出了一种开发用于网络管理的自主代理的方法。需要开发的代理有两种:静态代理或动态代理。第一种方法可以通过产生规则或前馈神经网络,利用专家或网络管理员提供的启发式方法来实现。利用网络实例,我们可以构造动态代理。通过一些例子可以训练递归神经网络来解决问题。此外,还必须考虑管理的行为,网络管理可能是被动的,也可能是主动的。通过分析,可以定义问题需要静态还是动态自主代理。静态方法在解决动态问题中的应用造成了两个不便:1)它不允许涵盖动态系统的所有不同状态;2)要覆盖所有的状态,它将需要一个巨大的神经网络,也许不可能收敛到一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing software autonomous agents to computer network management
Summary form only given. There are three important concepts in the computer network management area: managers, agents and managed objects. This work presents a methodology to develop autonomous agents for network management. There are two kinds of agents to develop: static or dynamic agents. The first one can be implemented, using heuristics obtained from an expert or the network administrator, through production rules or feedforward neural networks. Using the network examples we can construct dynamic agents. The recurrent neural network may be trained to solve a problem using some examples. Moreover, the behavior of the management must be considered, the network management may be reactive or proactive. From the analysis it is possible to define if the problem demands static or dynamic autonomous agents. The application of a static approach in the solution of dynamic problems cause two inconveniences: 1) it does not allow covering all the different states of a dynamic system; and 2) to cover all the states it would require a great neural network, perhaps impossible of converging to a solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信