Hopf代数。变异体概念和重构定理

J. Vercruysse
{"title":"Hopf代数。变异体概念和重构定理","authors":"J. Vercruysse","doi":"10.1093/acprof:oso/9780199646296.003.0005","DOIUrl":null,"url":null,"abstract":"Hopf algebras are closely related to monoidal categories. More precise, $k$-Hopf algebras can be characterized as those algebras whose category of finite dimensional representations is an autonomous monoidal category such that the forgetful functor to $k$-vectorspaces is a strict monoidal functor. This result is known as the Tannaka reconstruction theorem (for Hopf algebras). Because of the importance of both Hopf algebras in various fields, over the last last few decades, many generalizations have been defined. We will survey these different generalizations from the point of view of the Tannaka reconstruction theorem.","PeriodicalId":273067,"journal":{"name":"Quantum Physics and Linguistics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hopf algebras - Variant notions and reconstruction theorems\",\"authors\":\"J. Vercruysse\",\"doi\":\"10.1093/acprof:oso/9780199646296.003.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hopf algebras are closely related to monoidal categories. More precise, $k$-Hopf algebras can be characterized as those algebras whose category of finite dimensional representations is an autonomous monoidal category such that the forgetful functor to $k$-vectorspaces is a strict monoidal functor. This result is known as the Tannaka reconstruction theorem (for Hopf algebras). Because of the importance of both Hopf algebras in various fields, over the last last few decades, many generalizations have been defined. We will survey these different generalizations from the point of view of the Tannaka reconstruction theorem.\",\"PeriodicalId\":273067,\"journal\":{\"name\":\"Quantum Physics and Linguistics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Physics and Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/acprof:oso/9780199646296.003.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Physics and Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780199646296.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

Hopf代数与一元范畴密切相关。更精确地说,$k$-Hopf代数可以被表征为这样的代数,其有限维表示的范畴是一个自治的一元范畴,使得$k$-向量空间的遗忘函子是一个严格的一元函子。这个结果被称为Tannaka重构定理(对于Hopf代数)。由于Hopf代数在各个领域的重要性,在过去的几十年里,许多推广已经被定义。我们将从Tannaka重构定理的角度来考察这些不同的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf algebras - Variant notions and reconstruction theorems
Hopf algebras are closely related to monoidal categories. More precise, $k$-Hopf algebras can be characterized as those algebras whose category of finite dimensional representations is an autonomous monoidal category such that the forgetful functor to $k$-vectorspaces is a strict monoidal functor. This result is known as the Tannaka reconstruction theorem (for Hopf algebras). Because of the importance of both Hopf algebras in various fields, over the last last few decades, many generalizations have been defined. We will survey these different generalizations from the point of view of the Tannaka reconstruction theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信