文本聚类的潜在本体特征发现

Van T. T. Duong, T. Cao, C. Chau, T. Quan
{"title":"文本聚类的潜在本体特征发现","authors":"Van T. T. Duong, T. Cao, C. Chau, T. Quan","doi":"10.1109/RIVF.2009.5174647","DOIUrl":null,"url":null,"abstract":"The content of a text is mainly defined by keywords and named entities occurring in it. In particular for news articles, named entities are usually important to define their semantics. However, named entities have ontological features, namely, their aliases, types, and identifiers, which are hidden from their textual appearance. In this paper, we explore weighted combinations of those latent named entity features with keywords for text clustering. To that end, the traditional vector space model is adapted with multiple vectors defined over spaces of entity names, types, name-type pairs, identifiers, and keywords. Clustering quality is evaluated by both of the self purity-separation type and the relative comparison type of measures. Hard and fuzzy clustering experiments of the proposed model on selected data subsets of Reuters-21578 are conducted and evaluated.","PeriodicalId":243397,"journal":{"name":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Latent Ontological Feature Discovery for Text Clustering\",\"authors\":\"Van T. T. Duong, T. Cao, C. Chau, T. Quan\",\"doi\":\"10.1109/RIVF.2009.5174647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The content of a text is mainly defined by keywords and named entities occurring in it. In particular for news articles, named entities are usually important to define their semantics. However, named entities have ontological features, namely, their aliases, types, and identifiers, which are hidden from their textual appearance. In this paper, we explore weighted combinations of those latent named entity features with keywords for text clustering. To that end, the traditional vector space model is adapted with multiple vectors defined over spaces of entity names, types, name-type pairs, identifiers, and keywords. Clustering quality is evaluated by both of the self purity-separation type and the relative comparison type of measures. Hard and fuzzy clustering experiments of the proposed model on selected data subsets of Reuters-21578 are conducted and evaluated.\",\"PeriodicalId\":243397,\"journal\":{\"name\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2009.5174647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2009.5174647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文本的内容主要由其中出现的关键字和命名实体定义。特别是对于新闻文章,命名实体对于定义其语义通常很重要。然而,命名实体具有本体特征,即它们的别名、类型和标识符,这些都隐藏在它们的文本外观中。在本文中,我们探索了这些潜在命名实体特征与文本聚类关键字的加权组合。为此,在实体名称、类型、名称-类型对、标识符和关键字的空间上定义了多个向量,从而适应了传统的向量空间模型。用自纯分离测度和相对比较测度对聚类质量进行评价。对所提出的模型在Reuters-21578的数据子集上进行了硬聚类和模糊聚类实验并进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Ontological Feature Discovery for Text Clustering
The content of a text is mainly defined by keywords and named entities occurring in it. In particular for news articles, named entities are usually important to define their semantics. However, named entities have ontological features, namely, their aliases, types, and identifiers, which are hidden from their textual appearance. In this paper, we explore weighted combinations of those latent named entity features with keywords for text clustering. To that end, the traditional vector space model is adapted with multiple vectors defined over spaces of entity names, types, name-type pairs, identifiers, and keywords. Clustering quality is evaluated by both of the self purity-separation type and the relative comparison type of measures. Hard and fuzzy clustering experiments of the proposed model on selected data subsets of Reuters-21578 are conducted and evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信