预测图像趣味性的内容描述

M. Constantin, B. Ionescu
{"title":"预测图像趣味性的内容描述","authors":"M. Constantin, B. Ionescu","doi":"10.1109/ISSCS.2017.8034914","DOIUrl":null,"url":null,"abstract":"In this article we analyze the prediction of image interestingness, a domain that is gaining importance in the fields such as recommendation systems, social media and advertising. We investigate the contribution of early and late fusion techniques, while using a set of image descriptors and analyze the best combinations that predict interestingness. Experimental validation is carried out on the MediaEval 2016 Predicting Media Interestingness image dataset. Results show the benefit of the introduction of late fusion approaches to solve the task, allowing to achieve better results than the state of the art.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Content description for Predicting image Interestingness\",\"authors\":\"M. Constantin, B. Ionescu\",\"doi\":\"10.1109/ISSCS.2017.8034914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we analyze the prediction of image interestingness, a domain that is gaining importance in the fields such as recommendation systems, social media and advertising. We investigate the contribution of early and late fusion techniques, while using a set of image descriptors and analyze the best combinations that predict interestingness. Experimental validation is carried out on the MediaEval 2016 Predicting Media Interestingness image dataset. Results show the benefit of the introduction of late fusion approaches to solve the task, allowing to achieve better results than the state of the art.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们分析了图像兴趣度的预测,这是一个在推荐系统、社交媒体和广告等领域越来越重要的领域。我们研究了早期和晚期融合技术的贡献,同时使用了一组图像描述符,并分析了预测兴趣的最佳组合。在MediaEval 2016预测媒体兴趣图像数据集上进行了实验验证。结果表明,引入晚期融合方法来解决任务的好处,可以获得比最先进的结果更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content description for Predicting image Interestingness
In this article we analyze the prediction of image interestingness, a domain that is gaining importance in the fields such as recommendation systems, social media and advertising. We investigate the contribution of early and late fusion techniques, while using a set of image descriptors and analyze the best combinations that predict interestingness. Experimental validation is carried out on the MediaEval 2016 Predicting Media Interestingness image dataset. Results show the benefit of the introduction of late fusion approaches to solve the task, allowing to achieve better results than the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信