Jonathan Herzig, Guy Feigenblat, Michal Shmueli-Scheuer, D. Konopnicki, A. Rafaeli
{"title":"利用情感特征预测社交媒体客户支持对话中的客户满意度","authors":"Jonathan Herzig, Guy Feigenblat, Michal Shmueli-Scheuer, D. Konopnicki, A. Rafaeli","doi":"10.1145/2930238.2930285","DOIUrl":null,"url":null,"abstract":"Providing customer support through social media channels is gaining popularity. In such a context, predicting customer satisfaction in an early stage of a service conversation is important. Such an analysis can help personalize agent assignment to maximize customer satisfaction, and prioritize conversations. In this paper, we show that affective features such as customer's and agent's personality traits and emotion expression improve prediction of customer satisfaction when added to more typical text based features. We only utilize information extracted from the first customer conversation turn and previous customer and agent social network activity. Thus, our customer satisfaction classifier outputs its prediction in an early stage of the conversation, before any interaction has taken place between the customer and an agent. Our model was trained and tested on a Twitter conversations dataset of two customer support services, and shows an improvement of 30% in F1-score for predicting dissatisfaction.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Predicting Customer Satisfaction in Customer Support Conversations in Social Media Using Affective Features\",\"authors\":\"Jonathan Herzig, Guy Feigenblat, Michal Shmueli-Scheuer, D. Konopnicki, A. Rafaeli\",\"doi\":\"10.1145/2930238.2930285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing customer support through social media channels is gaining popularity. In such a context, predicting customer satisfaction in an early stage of a service conversation is important. Such an analysis can help personalize agent assignment to maximize customer satisfaction, and prioritize conversations. In this paper, we show that affective features such as customer's and agent's personality traits and emotion expression improve prediction of customer satisfaction when added to more typical text based features. We only utilize information extracted from the first customer conversation turn and previous customer and agent social network activity. Thus, our customer satisfaction classifier outputs its prediction in an early stage of the conversation, before any interaction has taken place between the customer and an agent. Our model was trained and tested on a Twitter conversations dataset of two customer support services, and shows an improvement of 30% in F1-score for predicting dissatisfaction.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Customer Satisfaction in Customer Support Conversations in Social Media Using Affective Features
Providing customer support through social media channels is gaining popularity. In such a context, predicting customer satisfaction in an early stage of a service conversation is important. Such an analysis can help personalize agent assignment to maximize customer satisfaction, and prioritize conversations. In this paper, we show that affective features such as customer's and agent's personality traits and emotion expression improve prediction of customer satisfaction when added to more typical text based features. We only utilize information extracted from the first customer conversation turn and previous customer and agent social network activity. Thus, our customer satisfaction classifier outputs its prediction in an early stage of the conversation, before any interaction has taken place between the customer and an agent. Our model was trained and tested on a Twitter conversations dataset of two customer support services, and shows an improvement of 30% in F1-score for predicting dissatisfaction.