时间csp的可处理组合

M. Bodirsky, Johannes Greiner, Jakub Rydval
{"title":"时间csp的可处理组合","authors":"M. Bodirsky, Johannes Greiner, Jakub Rydval","doi":"10.46298/lmcs-18(2:11)2022","DOIUrl":null,"url":null,"abstract":"The constraint satisfaction problem (CSP) of a first-order theory $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. We study the computational complexity of $\\mathrm{CSP}(T_1 \\cup T_2)$ where $T_1$ and $T_2$ are theories with disjoint finite relational signatures. We prove that if $T_1$ and $T_2$ are the theories of temporal structures, i.e., structures where all relations have a first-order definition in $(\\mathbb{Q};<)$, then $\\mathrm{CSP}(T_1 \\cup T_2)$ is in P or NP-complete. To this end we prove a purely algebraic statement about the structure of the lattice of locally closed clones over the domain ${\\mathbb Q}$ that contain $\\mathrm{Aut}(\\mathbb{Q};<)$.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tractable Combinations of Temporal CSPs\",\"authors\":\"M. Bodirsky, Johannes Greiner, Jakub Rydval\",\"doi\":\"10.46298/lmcs-18(2:11)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constraint satisfaction problem (CSP) of a first-order theory $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. We study the computational complexity of $\\\\mathrm{CSP}(T_1 \\\\cup T_2)$ where $T_1$ and $T_2$ are theories with disjoint finite relational signatures. We prove that if $T_1$ and $T_2$ are the theories of temporal structures, i.e., structures where all relations have a first-order definition in $(\\\\mathbb{Q};<)$, then $\\\\mathrm{CSP}(T_1 \\\\cup T_2)$ is in P or NP-complete. To this end we prove a purely algebraic statement about the structure of the lattice of locally closed clones over the domain ${\\\\mathbb Q}$ that contain $\\\\mathrm{Aut}(\\\\mathbb{Q};<)$.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(2:11)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(2:11)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一阶理论$T$的约束满足问题(CSP)是在$T$的某个模型中决定给定的原子公式的连接是否可满足的计算问题。研究了$\ mathm {CSP}(T_1 \cup T_2)$的计算复杂度,其中$T_1$和$T_2$是具有不相交有限关系签名的理论。我们证明了如果$T_1$和$T_2$是时间结构的理论,即所有关系在$(\mathbb{Q};<)$中有一阶定义的结构,则$\ mathm {CSP}(T_1 \cup T_2)$是P或np完全的。为此,我们证明了${\mathbb Q}$上包含$\ mathm {Aut}(\mathbb{Q};<)$的局部闭克隆的格结构的一个纯代数命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tractable Combinations of Temporal CSPs
The constraint satisfaction problem (CSP) of a first-order theory $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. We study the computational complexity of $\mathrm{CSP}(T_1 \cup T_2)$ where $T_1$ and $T_2$ are theories with disjoint finite relational signatures. We prove that if $T_1$ and $T_2$ are the theories of temporal structures, i.e., structures where all relations have a first-order definition in $(\mathbb{Q};<)$, then $\mathrm{CSP}(T_1 \cup T_2)$ is in P or NP-complete. To this end we prove a purely algebraic statement about the structure of the lattice of locally closed clones over the domain ${\mathbb Q}$ that contain $\mathrm{Aut}(\mathbb{Q};<)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信