{"title":"一种基于双曲正弦函数的伪随机比特发生器","authors":"Qi Wu","doi":"10.1051/itmconf/20224702001","DOIUrl":null,"url":null,"abstract":"In the literature, little attention is paid to devising and analyzing novel one dimensional chaotic mappings. In our previous efforts, we have tried fold, translation & scale on arctangent function & sigmoid function respectively, which brings good results. In this paper, we do the same to obtain a variant of Hyperbolic Sine Function. Both Bifurcation Diagram & Lyapunov Exponent Spectrum manifest that the new mapping possesses wonderful chaotic properties. Then, a pseudorandom bit generator is designed based on it. Pseudorandom tests demonstrate that the generator is much better than our previous ones. It owns great application prospect.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pseudorandom Bit Generator Based on Hyperbolic Sine Function\",\"authors\":\"Qi Wu\",\"doi\":\"10.1051/itmconf/20224702001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the literature, little attention is paid to devising and analyzing novel one dimensional chaotic mappings. In our previous efforts, we have tried fold, translation & scale on arctangent function & sigmoid function respectively, which brings good results. In this paper, we do the same to obtain a variant of Hyperbolic Sine Function. Both Bifurcation Diagram & Lyapunov Exponent Spectrum manifest that the new mapping possesses wonderful chaotic properties. Then, a pseudorandom bit generator is designed based on it. Pseudorandom tests demonstrate that the generator is much better than our previous ones. It owns great application prospect.\",\"PeriodicalId\":177985,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/itmconf/20224702001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20224702001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Pseudorandom Bit Generator Based on Hyperbolic Sine Function
In the literature, little attention is paid to devising and analyzing novel one dimensional chaotic mappings. In our previous efforts, we have tried fold, translation & scale on arctangent function & sigmoid function respectively, which brings good results. In this paper, we do the same to obtain a variant of Hyperbolic Sine Function. Both Bifurcation Diagram & Lyapunov Exponent Spectrum manifest that the new mapping possesses wonderful chaotic properties. Then, a pseudorandom bit generator is designed based on it. Pseudorandom tests demonstrate that the generator is much better than our previous ones. It owns great application prospect.