紧李群上一类双向正交小波的研究

Baoqin Wang, Gang Wang, L. Yuan
{"title":"紧李群上一类双向正交小波的研究","authors":"Baoqin Wang, Gang Wang, L. Yuan","doi":"10.1109/ICWAPR.2010.5576357","DOIUrl":null,"url":null,"abstract":"In this paper, by virtue of the methods which comes from intersecting and combining differential geometry with wavelet theory, and this method belong to us. We extend the two-direction multiresolution and the two-direction Mallat Algorithm to the theory on the special differential manifold — compact Lie group, our work lay a foundation for the further study wavelet theory on compact Lie group.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"552 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on a class of two-direction orthogonal wavelets on compact Lie groups\",\"authors\":\"Baoqin Wang, Gang Wang, L. Yuan\",\"doi\":\"10.1109/ICWAPR.2010.5576357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by virtue of the methods which comes from intersecting and combining differential geometry with wavelet theory, and this method belong to us. We extend the two-direction multiresolution and the two-direction Mallat Algorithm to the theory on the special differential manifold — compact Lie group, our work lay a foundation for the further study wavelet theory on compact Lie group.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"552 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用微分几何与小波理论相结合的方法,将微分几何与小波理论相结合,该方法属于我们自己。将双向多分辨率和双向Mallat算法推广到特殊微分流形紧李群的理论中,为进一步研究小波理论在紧李群上的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on a class of two-direction orthogonal wavelets on compact Lie groups
In this paper, by virtue of the methods which comes from intersecting and combining differential geometry with wavelet theory, and this method belong to us. We extend the two-direction multiresolution and the two-direction Mallat Algorithm to the theory on the special differential manifold — compact Lie group, our work lay a foundation for the further study wavelet theory on compact Lie group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信