基于人工智能的半导体器件视觉异常定位与分类

Minh Khai Le, Jason Zi Jie Chia, Dennis Peskes
{"title":"基于人工智能的半导体器件视觉异常定位与分类","authors":"Minh Khai Le, Jason Zi Jie Chia, Dennis Peskes","doi":"10.1109/eIT57321.2023.10187356","DOIUrl":null,"url":null,"abstract":"This paper presents an AI-based system for automated visual inspection of semiconductor components, aimed at improving the Zero-Defect strategy in their manufacturing process. The system leverages unsupervised learning using Variational Autoencoder to learn and compare images of undamaged components to identify anomalies. An anomaly score is devised to enable detection of even minor flaws on the edges of components and decision rules are evaluated using appropriate metrics. The proposed system surpasses the current tape machine in detecting anomalies, hence contributing to achieving the Zero-Defect strategy in semiconductor manufacturing.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Based Localization and Classification of Visual Anomalies on Semiconductor Devices\",\"authors\":\"Minh Khai Le, Jason Zi Jie Chia, Dennis Peskes\",\"doi\":\"10.1109/eIT57321.2023.10187356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an AI-based system for automated visual inspection of semiconductor components, aimed at improving the Zero-Defect strategy in their manufacturing process. The system leverages unsupervised learning using Variational Autoencoder to learn and compare images of undamaged components to identify anomalies. An anomaly score is devised to enable detection of even minor flaws on the edges of components and decision rules are evaluated using appropriate metrics. The proposed system surpasses the current tape machine in detecting anomalies, hence contributing to achieving the Zero-Defect strategy in semiconductor manufacturing.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于人工智能的半导体元件自动视觉检测系统,旨在改善半导体元件制造过程中的零缺陷策略。该系统利用Variational Autoencoder的无监督学习来学习和比较未损坏部件的图像,以识别异常情况。设计了一个异常分数,以便能够检测到组件边缘上的甚至很小的缺陷,并使用适当的度量来评估决策规则。该系统在检测异常方面超越了现有的磁带机,从而有助于实现半导体制造中的零缺陷策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-Based Localization and Classification of Visual Anomalies on Semiconductor Devices
This paper presents an AI-based system for automated visual inspection of semiconductor components, aimed at improving the Zero-Defect strategy in their manufacturing process. The system leverages unsupervised learning using Variational Autoencoder to learn and compare images of undamaged components to identify anomalies. An anomaly score is devised to enable detection of even minor flaws on the edges of components and decision rules are evaluated using appropriate metrics. The proposed system surpasses the current tape machine in detecting anomalies, hence contributing to achieving the Zero-Defect strategy in semiconductor manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信