Xiaoli Liu, S. Tamminen, Xiang Su, Pekka Siirtola, J. Röning, J. Riekki, Jussi Kiljander, J. Soininen
{"title":"提高物联网大数据在决策中的准确性","authors":"Xiaoli Liu, S. Tamminen, Xiang Su, Pekka Siirtola, J. Röning, J. Riekki, Jussi Kiljander, J. Soininen","doi":"10.1109/PERCOMW.2018.8480371","DOIUrl":null,"url":null,"abstract":"Data are crucial to support decision making. If data have low veracity, decisions are not likely to be sound. Internet of Things (IoT) generates big data with inaccuracy, inconsistency, incompleteness, deception, and model approximation. Enhancing data veracity is important to address these challenges. In this article, we summarize the key characteristics and challenges of IoT, which influence data processing and decision making. We review the landscape of measuring and enhancing data veracity and mining uncertain data streams. Moreover, we propose five recommendations for future development of veracious big IoT data analytics that are related to the heterogeneous and distributed nature of IoT data, autonomous decision-making, context-aware and domain-optimized methodologies, data cleaning and processing techniques for IoT edge devices, and privacy preserving, personalized, and secure data management.","PeriodicalId":190096,"journal":{"name":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Enhancing Veracity of IoT Generated Big Data in Decision Making\",\"authors\":\"Xiaoli Liu, S. Tamminen, Xiang Su, Pekka Siirtola, J. Röning, J. Riekki, Jussi Kiljander, J. Soininen\",\"doi\":\"10.1109/PERCOMW.2018.8480371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data are crucial to support decision making. If data have low veracity, decisions are not likely to be sound. Internet of Things (IoT) generates big data with inaccuracy, inconsistency, incompleteness, deception, and model approximation. Enhancing data veracity is important to address these challenges. In this article, we summarize the key characteristics and challenges of IoT, which influence data processing and decision making. We review the landscape of measuring and enhancing data veracity and mining uncertain data streams. Moreover, we propose five recommendations for future development of veracious big IoT data analytics that are related to the heterogeneous and distributed nature of IoT data, autonomous decision-making, context-aware and domain-optimized methodologies, data cleaning and processing techniques for IoT edge devices, and privacy preserving, personalized, and secure data management.\",\"PeriodicalId\":190096,\"journal\":{\"name\":\"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2018.8480371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2018.8480371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Veracity of IoT Generated Big Data in Decision Making
Data are crucial to support decision making. If data have low veracity, decisions are not likely to be sound. Internet of Things (IoT) generates big data with inaccuracy, inconsistency, incompleteness, deception, and model approximation. Enhancing data veracity is important to address these challenges. In this article, we summarize the key characteristics and challenges of IoT, which influence data processing and decision making. We review the landscape of measuring and enhancing data veracity and mining uncertain data streams. Moreover, we propose five recommendations for future development of veracious big IoT data analytics that are related to the heterogeneous and distributed nature of IoT data, autonomous decision-making, context-aware and domain-optimized methodologies, data cleaning and processing techniques for IoT edge devices, and privacy preserving, personalized, and secure data management.